[ Sitemap ] [ Kontakt ] [ Impressum ] [ ]   


Home


Aktuelles

- Mehr Chemie Nachrichten

- Neueste Forschungsartikel

- Stellenmarkt Chemie


Chemie A bis Z

- Index Chemie

- Chemikalien

- Produkte und Firmen


About Internetchemie

- Internetchemie

- Impressum


English News



Artikel lesen ...

Publiziert am 07.01.2008 Infos zum Internetchemie RSS News Feed

Wo und wie beginnt die Übersetzung des genetischen Codes?


 
Neuer Mechanismus der Translationsinitiation auf der mRNA von Archaea entdeckt - bei der Mehrzahl der in salzreichen Umgebungen lebenden Arten fehlen nicht kodierende Bereiche (UTRs) vor einer Protein kodierenden Sequenz.

FRANKFURT. Wie der genetische Code der Lebewesen in Proteine übersetzt wird, wie also die so genannte Translation funktioniert, das glaubte man seit Jahren perfekt verstanden zu haben. Doch der Teufel steckt im Detail, fand jetzt die Arbeitsgruppe um den Frankfurter Genetiker Prof. Jörg Soppa heraus. An Archaea, die neben den zellkernlosen Bakterien und zellkerntragenden Organismen wie Tieren, Pilzen und Pflanzen (Eucaryota) die dritte Klasse von Lebewesen bilden, fanden die Forscher eine neue Art der so genannten Translationsinitiation. Hinter diesem Begriff verbirgt sich der Mechanismus, der einem Ribosom anzeigt, an welcher Stelle der Code für eine Proteinsequenz auf der mRNA beginnt. Ribosome sind Makromoleküle, die in den Zellen die Funktion der Proteinfabriken übernehmen, die mRNA (Boten-Ribonukleinsäure oder messenger-RNA) übermittelt ihnen die in der DNA gespeicherte genetische Information zur weiteren Verarbeitung. "Es war vollkommen unerwartet, bei einer so zentralen Funktion der Zelle wie der Translation, die seit Jahrzehnten untersucht wird, auf einen neuen Mechanismus zu stoßen", erklärt Soppa, dessen Ergebnisse in der angesehenen Zeitschrift PLoS Genetics veröffentlicht wurden.

Um die in der DNA eines Lebewesens gespeicherte Information in reale Protein-Strukturen umsetzen zu können, muss die DNA zunächst in Boten-Ribonukleinsäuren (mRNAs) übersetzt werden (Transkription). In einem zweiten Schritt, der Translation, stellen dann die Ribosomen Proteine gemäß der Informationen der mRNAs her. Bisher war man davon ausgegangen, dass die Translationsinitiation bei Archaea ähnlich abläuft wie bei ?normalen? Bakterien. Dort können mRNAs mehrere für Proteine kodierende Bereiche enthalten, die jeweils durch nichtkodierende Bereiche getrennt sind. Die Information, wo die Übersetzung einer mRNA in ein Protein jeweils starten soll, ist im davor liegenden UTR (einem nicht kodierenden Bereich) lokalisiert. Etwa drei bis zehn Nukleotide vor dem Translationsstart liegt ein nach seinen Entdeckern Shine-Dalgarno-Sequenz genanntes Motiv, das mit dem Ribosom wechselwirkt und dieses für den Beginn der Translation positioniert. Bislang wurde angenommen, dass die Shine-Dalgarno-Sequenz für die Translationsinitiation bei fast allen prokaryontischen mRNAs essentiell ist. Als Ausnahmen waren nur mRNAs bekannt, die keine 5'-UTR enthalten. Der Mechanismus der Translationsinitiation an solchen mRNAs ist bislang nur wenig untersucht worden, er unterscheidet sich allerdings deutlich von dem Mechanismus der Initiation an normalen, 5'-UTR-haltigen mRNAs.

Soppas Charakterisierung von 40 mRNAs von Archaea hat nun ergeben, dass die Mehrzahl von ihnen keine 5'-UTR enthält. Untersucht wurden zwei Arten halophiler Archaea, die salzreiche Umgebungen bevorzugen. Zumindest bei ihnen bildet der Mechanismus der Translationsregulation, der bei Bakterien als Ausnahme betrachtet wird, den Regelfall. Noch überraschender war jedoch, dass die mRNAs mit 5'-UTR keine Shine-Dalgarno Sequenz enthielten. In einer bioinformatischen Analyse wurde gezeigt, dass dies für das gesamte Genom zutrifft und die Anwesenheit einer Shine-Dalgarno Sequenz vor einem kodierenden Bereich bei den untersuchten Arten eine Seltenheit ist. An einigen Beispielen wurde außerdem bewiesen, dass die 5'-UTRs ohne Shine-Dalgarno-Sequenz trotzdem in der Zelle effizient ?übersetzt? werden. Die Forschungen der nächsten Jahre sollen zeigen, wie dieser neue Mechanismus funktioniert, welche Komponenten beteiligt sind, und wie weit verbreitet er in anderen Archaea oder auch in Bakterien ist.

 

Quellen und Artikel:

-

Open Access Article
Mariam Brenneis, Oliver Hering, Christian Lange, Jörg Soppa:
Experimental Characterization of Cis-Acting Elements Important for Translation and Transcription in Halophilic Archaea.
In: PLoS Genet 3(12), 2008: e229 doi: 10.1371/journal.pgen.0030229.

-

Quelle: Johann Wolfgang Goethe-Universität Frankfurt (Main); Institut für Molekulare Biowissenschaften.

 

Weitere Informationen:

-

Ihre Pressemitteilung veröffentlichen ...


Suche nach themenverwandten Internetseiten:

Google

 


 

Internetchemie © 2007 - 2008 A. J. - aktualisiert am 15. Januar 2012