[ Sitemap ] [ Contact ] [ Imprint ]   


Home


Related Topics:

Astrochemistry

Lithium



Current News

Chemistry News

Current Research Articles

Job Market

Chemistry Conferences


Chemistry A to Z

Chemistry Index

Chemicals

Products and Companies


About Internetchemistry

Internetchemistry

Imprint



Published: 12.11.2009 Get Internetchemistry RSS News Feed

Lithium Depletion of the Sun


 
Exoplanets clue to sun's curious chemistry.

"For almost 10 years we have tried to find out what distinguishes stars with planetary systems from their barren cousins," says Garik Israelian, lead author of a paper appearing this week in the journal Nature. "We have now found that the amount of lithium in Sun-like stars depends on whether or not they have planets."

Low levels of this chemical element have been noticed for decades in the Sun, as compared to other solar-like stars, and astronomers have been unable to explain the anomaly. The discovery of a trend among planet-bearing stars provides a natural explanation to this long-standing mystery. "The explanation of this 60 year-long puzzle is for us rather simple," adds Israelian. "The Sun lacks lithium because it has planets."

Burning Lithium Inside a Star

Artist�s impression of a baby star still surrounded by a protoplanetary disc in which planets are forming. Using ESO�s very successful HARPS spectrograph, a team of astronomers has found that Sun-like stars which host planets have destroyed their lithium much more efficiently than planet-free stars. This finding does not only shed light on the low levels of this chemical element in the Sun, solving a long-standing mystery, but also provides astronomers with a very efficient way to pick out the stars most likely to host planets. It is not clear what causes the lithium to be destroyed. The general idea is that the planets or the presence of the protoplanetary disc disturb the interior of the star, bringing the lithium deeper down into the star than usual, into regions where the temperature is so hot that it is destroyed.

[Credit: ESO/L. Cal�ada]

This conclusion is based on the analysis of 500 stars, including 70 planet-hosting stars. Most of these stars were monitored for several years with ESO's High Accuracy Radial Velocity Planet Searcher. This spectrograph, better known as HARPS, is attached to ESO's 3.6-metre telescope and is the world's foremost exoplanet hunter. "This is the best possible sample available to date to understand what makes planet-bearing stars unique," says co-author Michel Mayor.

The astronomers looked in particular at Sun-like stars, almost a quarter of the whole sample. They found that the majority of stars hosting planets possess less than 1% of the amount of lithium shown by most of the other stars. "Like our Sun, these stars have been very efficient at destroying the lithium they inherited at birth," says team member Nuno Santos. "Using our unique, large sample, we can also prove that the reason for this lithium reduction is not related to any other property of the star, such as its age."

Unlike most other elements lighter than iron, the light nuclei of lithium, beryllium and boron are not produced in significant amounts in stars. Instead, it is thought that lithium, composed of just three protons and four neutrons, was mainly produced just after the Big Bang, 13.7 billion years ago. Most stars will thus have the same amount of lithium, unless this element has been destroyed inside the star.

This result also provides the astronomers with a new, cost-effective way to search for planetary systems: by checking the amount of lithium present in a star astronomers can decide which stars are worthy of further significant observing efforts.

Now that a link between the presence of planets and curiously low levels of lithium has been established, the physical mechanism behind it has to be investigated. "There are several ways in which a planet can disturb the internal motions of matter in its host star, thereby rearrange the distribution of the various chemical elements and possibly cause the destruction of lithium. It is now up to the theoreticians to figure out which one is the most likely to happen," concludes Mayor.

ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".



 

Further Information and Source:

-

Garik Israelian, Elisa Delgado Mena, Nuno C. Santos, Sergio G. Sousa, Michel Mayor, Stephane Udry, Carolina Dom�nguez Cerde�a, Rafael Rebolo & Sofia Randich:
Enhanced lithium depletion in Sun-like stars with orbiting planets.
In: Nature; 462, 189-191 (12 November 2009)
DOI: 10.1038/nature08483
URL: direct link

-

Scientific paper online

-

Exoplanets

-

Observational Tests of the Processes of Nucleosynthesis in the Universerse

-

Source: ESO.
European Southern Observatory

 

Related Information:

 

Publish your Press Release





 


Search for related information:


Chemistry Information not found?
Try this form:


Custom Search


Internetchemistry � 2007 - 2009 A. J. - last update 12.11.2009