Abgaskatalysatoren durchleuchtet

Wie funktionieren Abgaskatalysatoren? Wissenschaftler des Karlsruher Instituts für Technologie (KIT) haben die Reaktionen unter wirklichkeitsnahen Bedingungen untersucht.


Einblicke in Abgaskatalysatoren

Abbildung: Einblicke in Abgaskatalysatoren - Mithilfe von Röntgenstrahlung lassen sich Reaktionen in Katalysatoren unter realitätsnahen Bedingungen beobachten. [Bildquelle: KIT-ITCP]



 

Mithilfe von Röntgenstrahlung beobachteten die Forscher die Wechselwirkungen des Schadstoffmoleküls Stickstoffmonoxid und des Reduktionsmittels Ammoniak mit den Eisen- und Kupferzentren - den Übergangsmetallionen, an denen die Reaktion stattfindet - der Katalysatoren Fe-ZSM-5 und Cu-SSZ-13. Ihre Ergebnisse können dazu beitragen, die Abgasnachbehandlung weiter zu verbessern. In der Zeitschrift Chemical Communications stellen die Forscher ihren Ansatz vor [siehe Artikel-Hinweis unten].

Moderne Katalysatoren zur Abgasnachbehandlung in Fahrzeugen mit Verbrennungsmotor haben erheblich dazu beigetragen, Schadstoffemissionen zu reduzieren. Durch Oxidation beziehungsweise Reduktion - Abgabe bzw. Aufnahme von Elektronen - wandeln Abgaskatalysatoren Verbrennungsschadstoffe wie Kohlenwasserstoffe, Kohlenstoffmonoxid und Stickoxide in die Stoffe Kohlenstoffdioxid, Wasser und Stickstoff um. Immer striktere Vorgaben des Gesetzgebers verlangen, den Kraftstoffverbrauch zu verringern und den Ausstoß von Stickoxiden weiter zu senken. Durch Zugabe des Reduktionsmittels Ammoniak, das zum Beispiel durch Zersetzung der hochreinen Harnstofflösung AdBlueŽ im Fahrzeug gebildet wird, lassen sich die Stickoxide am Katalysator zu unschädlichem Stickstoff und Wasserdampf umsetzen. Die Harnstofflösung wird dazu vor dem Katalysator in den Abgasstrang eingespritzt.

Um einen Katalysator zu verbessern, ist es erforderlich, ihre Funktion und die einzelnen Reaktionsschritte genau zu verstehen. "Verlässliche Erkenntnisse über die ablaufenden Reaktionen lassen sich nur unter realitätsnahen Reaktionsbedingungen gewinnen", erklärt Professor Jan-Dierk Grunwaldt, Inhaber des Lehrstuhls Chemische Technik und Katalyse am KIT. "Das heißt, wir müssen den Katalysatoren bei der Arbeit zuschauen. Dazu bieten Synchrotron-Strahlungsquellen hervorragende Möglichkeiten." Synchrotronstrahlung ist Röntgenstrahlung mit einer Energie von einigen bis zu Hunderten oder sogar einer Million Elektronenvolt. Mit ihr lassen sich die Eigenschaften der aktiven Metallzentren im Katalysator und deren Wechselwirkungen mit den Gasmolekülen beobachten. Dabei bieten sich zwei Methoden an: Die Röntgenabsorptionsspektroskopie (XAS) erlaubt es, den Oxidationszustand und die Koordinationszahl, das heißt die Zahl der nächsten Nachbarn eines Atoms zu ermitteln. Die Röntgenemissionsspektroskopie (XES) ermöglicht neuerdings zusätzlich, zwischen den adsorbierten - am Katalysator angelagerten Stoffen - zu unterscheiden. So lässt sich erschließen, welche Moleküle zur Reduktion führen, wann eine konkurrierende Adsorption stattfindet, das heißt, wann mehrere Stoffe um die Anlagerung am Katalysator konkurrieren, und wie einzelne Moleküle am Metallatom koordinieren.

Eine Forschungsgruppe um Professor Jan-Dierk Grunwaldt zusammen mit Professor Christoph R. Jacob, der kürzlich vom KIT an die TU Braunschweig berufen wurde, und Dr. Pieter Glatzel von der European Synchrotron Radiation Facility (ESRF) in Grenoble/Frankreich hat nun erstmals beide Methoden kombiniert, um die Reaktionen an zwei bereits in Fahrzeugen eingesetzten katalytisch aktiven Materialien unter realitätsnahen Bedingungen zu untersuchen. Dabei handelt es sich um die Materialien Fe-ZSM-5 und Cu-SSZ-13. Beide Materialien basieren auf Zeolithen, das sind besondere Mineralien mit poröser Gerüststruktur. Die Ergebnisse ihrer Untersuchungen stellen die Wissenschaftler in der Fachzeitschrift Chemical Communications vor.

Mithilfe der Röntgentechniken untersuchten und verglichen die Forscher die Wechselwirkung des Schadstoffmoleküls Stickstoffmonoxid und des Reduktionsmittels Ammoniak mit den Eisen- und Kupferzentren. "Obwohl in Summe die gleiche Reaktion abläuft, haben wir für die zwei Katalysatoren unterschiedliche Reaktionswege beobachtet", berichtet Tobias Günter, Doktorand am Lehrstuhl Chemische Technik und Katalyse des KIT. Für die Reaktion am Fe-ZSM-5-Katalysator wiesen die Wissenschaftler eine Adsorption des Stickstoffmonoxids über ein positiv geladenes Sauerstoffatom nach. Am Cu-SSZ-13-Katalysator hingegen zeigte sich dieses Verhalten nicht. Da außerdem keine direkte Koordination über das Stickstoffatom stattfand, gehen die Forscher von einer Reaktion aus der Gasphase mit einer möglichen Aktivierung am Ammoniakmolekül aus. "Dies kann auch erklären, warum Ammoniak die Reaktion am Fe-ZSM-5-Katalysator hemmte, was am Cu-SSZ-13-Katalysator nicht festzustellen war", erläutert Tobias Günter.

Die Erkenntnisse der Forscher um Jan-Dierk Grunwaldt liefern wertvolle Informationen für Modelle, um das Verhalten der Katalysatoren im Betrieb besser vorhersagen zu können. "Unser Ansatz mit den zwei röntgenbasierten Methoden eignet sich nicht nur für die genannten Materialien, sondern lässt sich auf viele weitere Materialien und Reaktionen übertragen", sagt Professor Grunwaldt. In Zukunft kann dieser Ansatz die weitere Entwicklung und Verbesserung von Abgaskatalysatoren wesentlich voranbringen.

 

Über das KIT

Das Karlsruher Institut für Technologie (KIT) vereint als selbstständige Körperschaft des öffentlichen Rechts die Aufgaben einer Universität des Landes Baden-Württemberg und eines nationalen Forschungszentrums in der Helmholtz-Gemein-schaft. Seine Kernaufgaben Forschung, Lehre und Innovation verbindet das KIT zu einer Mission. Mit rund 9 400 Mitarbeiterinnen und Mitarbeitern sowie 24 500 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.





Weitere Infos:

Veröffentlicht am: 16.07.2015

Tobias Günter, Hudson W. P. Carvalho, Dmitry E. Doronkin, Thomas Sheppard, Pieter Glatzel, Andrew J. Atkins, Julian Rudolph, Christoph R. Jacob, Maria Casapu, Jan-Dierk Grunwaldt:
Structural snapshots of the SCR reaction mechanism on Cu-SSZ-13.
In: Chemical Communications; online erschienen am 29. April 2015, DOI 10.1039/C5CC01758K

Quelle: Karlsruher Institut für Technologie, KIT








(C) 1996 - 2017 Internetchemie ChemLin