Erstmals ein Silafulleran synthetisiert

Käfigmolekül aus Silicium 30 Jahre nach der C60-Entdeckung hergestellt.


Silafulleran

Abbildung: Grafische Darstellung des erstmals synthetisierten Silafullerans. [Bildquelle: Universität Frankfurt a. M.]



 

Die Entdeckung des fußballförmigen C60-Moleküls im Jahre 1985 war ein Meilenstein für die Entwicklung der Nanowissenschaften. Parallel zum schnell aufblühenden Forschungsgebiet der Kohlenstoff-Fullerene versuchten Forscher lange Zeit vergebens, strukturell ähnliche Siliciumkäfige darzustellen.

Chemikern der Goethe-Universität ist es nun gelungen, eine Verbindung zu synthetisieren, die auf einem Si20-Dodekaeder aufbaut. Der in der Fachzeitschrift 'Angewandte Chemie' publizierte platonische Körper ist nicht nur ästhetisch reizvoll, sondern eröffnet auch neue Perspektiven für die Halbleiterindustrie [vgl. Artikel-Hinweis unten].

Der Si20-Dodekaeder ist ungefähr so groß wie das C60-Molekül. Entscheidende Unterschiede bestehen jedoch zwischen den Bindungsverhältnissen: Alle Kohlenstoffatome des C60 sind dreifach koordiniert und bilden Doppelbindungen aus. Im Silicium-Dodekaeder sind dagegen alle Atome vierfach koordiniert und über Einfachbindungen verknüpft, so dass auch eine Verwandtschaft zum Dodekahedran (C20H20) besteht. „Das Dodekahedran galt seinerzeit als ‚Mount Everest‘ der Organischen Chemie, weil es zunächst nur über eine 23-stufige Synthesesequenz zugänglich war. Im Gegensatz dazu bildet sich unser Si20-Käfig, ausgehend von Si2-Bausteinen, in einem Schritt“, so Prof. Matthias Wagner vom Institut für Anorganische und Analytische Chemie der Goethe-Universität.

Die Si20-Hohlkörper, die sein Doktorand Jan Tillmann isoliert, sind stets mit einem Chlorid-Ion gefüllt. Die Frankfurter Chemiker vermuten daher, dass sich der Käfig um das Anion herum aufbaut und dieses somit einen strukturbestimmenden Einfluss ausübt. Auf seiner Oberfläche trägt der Cluster acht Chloratome und zwölf Cl3Si-Gruppen. Sie weisen hochsymmetrisch in den Raum, wodurch das Molekül eine besondere Schönheit gewinnt. Quantenchemische Rechnungen aus dem Arbeitskreis von Professor Max C. Holthausen an der Goethe-Universität belegen, dass das experimentell beobachtete Substitutionsmuster eine ausgeprägte Stabilisierung des Si20-Gerüsts bewirkt.

Künftig wollen Tillmann und Wagner mithilfe der oberflächengebundenen Cl3Si-Ankergruppen dreidimensionale Nanonetzwerke aus Si20-Einheiten herstellen. Insbesondere interessieren sich die Forscher jedoch für das Anwendungspotential der neuen Verbindung: „Räumlich strikt begrenzte Silicium-Nanopartikel zeigen fundamental andere Eigenschaften als konventionelle Siliciumwafer“, erläutert Matthias Wagner. Daher eröffnet der lange gesuchte Zugang zum Siladodekahedran die Möglichkeit, fundamentale elektronische Eigenschaften käfigartiger Si-Nanopartikel im Vergleich zu kristallinem Halbleitersilizium zu studieren.

 

Die Goethe-Universität

ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 gegründet mit rein privaten Mitteln von freiheitlich orientierten Frankfurter Bürgerinnen und Bürgern fühlt sie sich als Bürgeruniversität bis heute dem Motto "Wissenschaft für die Gesellschaft" in Forschung und Lehre verpflichtet. Viele der Frauen und Männer der ersten Stunde waren jüdische Stifter. In den letzten 100 Jahren hat die Goethe-Universität Pionierleistungen erbracht auf den Feldern der Sozial-, Gesellschafts- und Wirtschaftswissenschaften, Chemie, Quantenphysik, Hirnforschung und Arbeitsrecht. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Heute ist sie eine der zehn drittmittelstärksten und drei größten Universitäten Deutschlands mit drei Exzellenzclustern in Medizin, Lebenswissenschaften sowie Geisteswissenschaften."





Weitere Infos:

Veröffentlicht am: 10.03.2015

Dipl.-Chem. Jan Tillmann, Dipl.-Chem. Josef Heinrich Wender, Dr. Ute Bahr, Dr. Michael Bolte, Dr. Hans-Wolfram Lerner, Prof. Dr. Max C. Holthausen und Prof. Dr. Matthias Wagner:
One-Step Synthesis of a [20]Silafullerane with an Endohedral Chloride Ion.
In: Angewandte Chemie; online veröffentlicht am 04. März 2015, DOI 10.1002/ange.201412050

Quelle: Goethe-Universität, Frankfurt am Main








(C) 1996 - 2017 Internetchemie ChemLin