Subtile Energielandschaft um Aceton genau vermessen

Ein Team aus dem Helmholtz-Zentrum Berlin konnte erstmals messen, wie neue Verbindungen zwischen Molekülen diese beeinflussen.



Abbildung: Ein Forscher-Team konnte erstmals mit der Methode der inelastischen Röntgenstreuung beobachten, wie der Aufbau von Wasserstoffbrücken die C=O Bindung im Aceton-Molekül verändert. [Bildquelle: HZB]
Aceton Wasserstoffbrücken

Dazu haben die Wissenschaftler aus Messdaten an der Swiss Lightsource des Paul-Scherrer-Instituts die "Energielandschaft" von Aceton-Molekülen rekonstruiert und so experimentell den Aufbau von Wasserstoffbrücken zwischen Aceton- und Chloroform-Molekülen nachgewiesen.

Die Ergebnisse sind in Nature Scientific Reports veröffentlicht [siehe Literatur-Hinweis unten] und helfen, grundlegende Phänomene der Chemie zu verstehen.

Moleküle setzen sich aus Atomen zusammen, die zueinander bestimmte Abstände und Winkel einnehmen. Die Gestalt eines Moleküls kann sich verändern, zum Beispiel durch die Nachbarschaft zu anderen Molekülen, durch äußere Kräfte und Anregungen oder auch wenn ein Molekül eine chemische Verbindung mit einem anderen Molekül eingeht. Ein nützliches Konzept, um die möglichen Änderungen in Molekülen zu beschreiben, sind so genannte Potenzialflächen oder Energielandschaften: Dies sind jedoch keine Flächen im realen Raum! Vielmehr betrachtet man Parameter, die das Molekül definieren, und stellt diese als Fläche dar, beispielsweise die Ausdehnung einer Kohlenstoff-Sauerstoff-Verbindung oder die Winkel zwischen verschiedenen Molekülgruppen. Solche Flächen kann man sich als hügelige Landschaften vorstellen: Wenn Licht einen Teil des Moleküls zu Schwingungen anregt, wandert der Zustand des Moleküls energetisch aufwärts, vielleicht sogar über einen Pass oder Gipfel hinweg. Schließlich kommt das Molekül wieder in das vorherige Energieminimum zurück oder landet in einer anderen Energiemulde, die veränderten Winkeln oder Verbindungslängen entspricht.

Manche dieser Veränderungen lassen auf Wasserstoffbrückenbindungen mit benachbarten Molekülen schließen.

 

Gezielt C=O-Bindung zu Schwingung angeregt und Antwort gemessen

Das Team um Annette Pietzsch und Alexander Föhlisch hat es nun erstmals geschafft, diese sehr subtilen Potenzialflächen rund um das kleine Molekül Aceton (Formel: C3H6O; ältere Schreibweise: Azeton) genau auszumessen. Sie nutzten dafür die Methode der inelastischen Röntgenstreuung (RIXS) an der Swiss Light Source, einer speziellen Strahlungsquelle des Paul Scherrer-Instituts (PSI) in der Schweiz. "Wir haben gezielt die Doppelbindung zwischen dem Kohlenstoff- und Sauerstoff-Atom in Aceton zu Schwingungen angeregt und die Antworten darauf genau analysiert", erklärt Annette Pietzsch. Durch die extrem hohe Auflösung der Messdaten gelang es ihnen, die Potenzialfläche entlang dieser C=O-Doppelbindung zu kartieren.

 

Wasserstoffbrücken hinterlassen Fingerabdruck

Im zweiten Teil des Experiments untersuchten sie eine Mischung aus Aceton und Chloroform; diese flüssige Mischung wird als azeotrop bezeichnet, das heißt, durch Destillation lassen sich die beiden Zutaten nicht mehr voneinander trennen. Nun konnten die Wissenschaftler erstmals experimentell beobachten, wie sich die Aceton-Moleküle über Wasserstoffbrücken dicht mit den Chloroform-Molekülen vernetzen: Aus den Messdaten konnten sie auf den Fingerabdruck von Wasserstoffbrückenbindungen schließen, die sich zwischen der C=O-Gruppe der Aceton-Moleküle und den Wasserstoff-Gruppen der Chloroform-Moleküle bilden.

 

Nützliches Werkzeug entwickelt

"Die Ergebnisse ermöglichen erstmals die quantitative Vermessung von multidimensionalen Potenzialflächen von Molekülen. Solche komplexen Potenzialflächen sind per se ein spannendes Untersuchungsobjekt, denn sie beschreiben auch, wie sich zum Beispiel biologisch aktive Moleküle in ihrer Umgebung verhalten. Wir haben nun ein Werkzeug entwickelt, um solche Potenzialflächen experimentell zu kartieren", schreibt das Team in seinem Beitrag, der im renommierten Nature Scientific Reports erschienen ist.

Annette Pietzsch arbeitet an der Berliner Synchrotronquelle BESSY II am Aufbau von METRIXS, einem Instrument für die Resonante Inelastische Röntgenstreuung, das in Zukunft noch deutlich bessere Auflösungen erreichen kann. Weiterhin wird das Experiment meV-RIXS hochaufgelöste Röntgenstreuung im Niederenergiebereich möglich machen. Alexander Föhlisch leitet das HZB-Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung und ist Sprecher des Helmholtz Virtual Institute 419 (Dynamic pathways in multidimensional landscapes).





Zusatzinformationen:

Simon Schreck, Annette Pietzsch, Brian Kennedy, Conny Sathe, Piter S. Miedema, Simone Techert, Vladimir N. Strocov, Thorsten Schmitt, Franz Hennies, Jan-Erik Rubensson und Alexander Föhlisch:
Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering.
In: Nature Scientific Reports; online erschienen am 29. Januar 2016, DOI 10.1038/srep20054

Quelle: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, HZB

Veröffentlicht am: 18.03.2016





© 1996 - 2017 Internetchemie ChemLin