Eine Waage für Atome

Physiker der Uni Wien haben eine Methode zum Wiegen von Atomen mittels hochaufgelöster bildgebender Verfahren an Graphen entwickelt.



Abbildung: Toma Susi von der Fakultät für Physik hat eine neue Methode zum Wiegen von Atomen mittels hochaufgelöster bildgebender Verfahren an Graphen getest. [Bildquelle, Copyright: Universität Wien]
Wiegen der Atome

Abbildung: Je leichter das Atom, desto weniger Elektronen werden im Mittel benötigt, um es herauszustoßen. [Bildquelle, Copyright: Uni Wien]
Atome mit Graphen sichtbar gemacht

Die chemischen Eigenschaften von Atomen werden durch die Anzahl der Protonen in deren Kern bestimmt. Dementsprechend werden Atome im Periodensystem der Elemente angeordnet. Jedoch können selbst chemisch identische Atome eine unterschiedliche Masse aufweisen - diese Varianten nennt man Isotope. Obwohl Verfahren zur Messung solcher Massenunterschiede existieren, haben diese nicht deren exakte Position in einer Probe verraten. Im renommierten Open Access Journal Nature Communications veröffentlichen Physiker um Toma Susi von der Universität Wien nun eine Methode zum Wiegen von Atomen mittels hochaufgelöster bildgebender Verfahren an Graphen, der nur Ein-Atom-dicken Schicht von Kohlenstoff.

Die verschiedenen, natürlich vorkommenden chemischen Elemente haben jedes für sich ganz eigene, spezifische Isotope. Bei Kohlenstoff kommen auf jedes stabile Kohlenstoff-Isotop 13C neunundneunzig Atome des leichteren der stabilen Kohlenstoff-Isotope 12C, welches ein Neutron weniger im Kern aufweist. Abgesehen von diesen natürlichen Variationen kann Materie aus mit Isotopen angereicherten chemischen Stoffen gezüchtet werden. Das ermöglicht den WissenschafterInnen zu untersuchen, wie sich Atome zu Festkörpern anordnen, um z.B. ihre Synthese zu verbessern. Die meisten traditionellen Methoden zur Messung der Isotopenhäufigkeiten und -anteile erfordern jedoch die Zerstörung einer größeren Menge der Probe oder sind auf eine Auflösung von hunderten Nanometer beschränkt, wodurch wichtige Details verschleiert bleiben.

In ihrer neuen Studie unter der Leitung von Jani Kotakoski haben Forscher der Universität Wien das hochentwickelte Rastertransmissionselektronenmikroskop Nion UltraSTEM100 eingesetzt, um Isotope auf Nanometer-kleinen Flächen einer Graphen-Probe zu messen. Dieselben energetischen Elektronen, die ein Bild der Graphen-Struktur entstehen lassen, können auch je ein Atom herausschlagen, indem sie am Kohlenstoffkern abgelenkt werden. Da das 13C-Isotop eine größere Masse hat, kann ein Elektron einem 12C-Atom einen geringfügig kräftigeren Stoß versetzen und es so einfacher herausschlagen. Wie viele Elektronen im Durchschnitt dafür nötig sind, lässt die lokale Isotopenkonzentration abschätzen. "Der Schlüssel zum Erfolg war die Kombination präziser Experimente mit einem verbesserten theoretischen Modell des Prozesses", so Toma Susi, Erstautor der Studie.

Die Publikation in Nature Communications ermöglichte es dem Team, der Idee von Open Science voll gerecht zu werden. Zusätzlich zur Veröffentlichung der Gutachten ihrer KollegInnen wurde neben ihrem eigentlichen Forschungsartikel eine umfangreiche Beschreibung der Methoden und Analysen beigefügt. Die Wissenschafter gingen sogar noch einen Schritt weiter und haben ihre mikroskopischen Daten auf den internetbasierten Speicherdienst figshare hochgeladen. Jeder mit einer Internetverbindung kann somit auf die Gigabyte an hochaufgelösten Bildern frei zugreifen, diese verwenden und zitieren. Toma Susi fährt fort: "Meines Wissens ist dies das erste Mal, dass elektronen-mikroskopische Daten auf dieser Skala offen geteilt werden."

Die Ergebnisse zeigen, dass moderne hochaufgelöste Elektronenmikroskope zwischen verschiedenen Kohlenstoff-Isotopen unterscheiden können. Obwohl diese Methode soweit nur für Graphen demonstriert wurde, ist es prinzipiell möglich, sie auf andere zweidimensionale Materialien auszuweiten. Dazu haben die Wissenschafter eine Patentanmeldung auf die neue Methode eingereicht. "Moderne Mikroskope erlauben uns schon jetzt alle atomaren Abstände in Festkörpern aufzulösen und zu sehen, aus welchen chemischen Elementen diese bestehen. Nun können wir Isotope zu dieser Liste hinzufügen", fasst Jani Kotakoski abschließend zusammen.

Finanzielle Unterstützung vom Fonds zur Förderung der wissenschaftlichen Forschung (FWF), dem Wiener Wissenschafts-, Forschungs- und Technologiefonds (WWTF), und dem European Research Council (ERC) hat direkt zur Durchführung dieser Forschung beigetragen.

Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 15 Fakultäten und vier Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.800 WissenschafterInnen. Die Universität Wien ist damit auch die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. 1365 gegründet, feierte die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum.





Zusatzinformationen:

Toma Susi, Christoph Hofer, Giacomo Argentero, Gregor T. Leuthner, Timothy J. Pennycook, Clemens Mangler, Jannik C. Meyer und Jani Kotakoski:
Atomic resolution electron irradiation time series of isotopically labeled monolayer graphene.
In: Figshare; veröffentlicht am 16. August 2016, DOI 10.6084/m9.figshare.c.3311946.v1

Toma Susi, Christoph Hofer, Giacomo Argentero, Gregor T. Leuthner, Timothy J. Pennycook, Clemens Mangler, Jannik C. Meyer und Jani Kotakoski:
Isotope analysis in the transmission electron microscope.
In: Nature Communications; online erschienen am 10. Oktober 2016, DOI 10.1038/ncomms13040

Quelle: Universität Wien, Österreich

Veröffentlicht am: 13.10.2016





© 1996 - 2017 Internetchemie ChemLin