[ Sitemap ] [ Kontakt ] [ Impressum ] [ ]   


Home


Weitere Infos:

Stickstoff

Umweltchemie

Aktuelle Fachartikel:

Massenspektrometrie


Aktuelles

Mehr Chemie Nachrichten

Neueste Forschungsartikel

Stellenmarkt Chemie


Chemie A bis Z

Index Chemie

Chemikalien

Produkte und Firmen


About Internetchemie

Internetchemie

Impressum


English News



Publiziert am 03.04.2008 Infos zum Internetchemie RSS News Feed

Neue Formel zur Bekämpfung des Treibhausgases Distickstoffoxid


 
Mathematik ermöglicht die Erforschung klimafreundlicher Abwasserreinigung.

Halle/S. Die Kosten der Reinigung von stickstoffbelasteten Abwässern könnten in Zukunft gesenkt werden. Bodenforscher des Helmholtz-Zentrums für Umweltforschung (UFZ) haben ein neues mathematisches Modell entwickelt, das helfen kann, die optimalen Bedingungen für eine mikrobiologische Reinigung zu finden. Mit Hilfe des stabilen natürlichen Stickstoff-Isotops 15N ist dieses bisher genaueste mathematische Modell erstmals in der Lage, die Mengen an Distickstoff (N2) aus den komplexen biochemischen Reinigungsprozessen Anammox und Denitrifikation sowie des atmosphärischen Hintergrundes exakt zuzuordnen, schreiben die Forscher in der Fachzeitschrift Rapid Communications in Mass Spectrometry. Dadurch kann der Wirkungsgrad solcher Abwasserreinigungsanlagen zukünftig deutlich verbessert und die Freisetzung des Treibhausgases N2O (Nebenprodukt der Denitrifikation) vermieden werden.

Stickstoffhaltiger Dünger in der Landwirtschaft ist einer der Hauptursachen für das Entstehen des Treibhausgases Distickstoffoxid (Lachgas).

Foto: André Künzelmann/UFZ

Mengenbestimmung an N2 aus einem Mix aus Anammox, Denitrifikation und Atmosphäre.

Quelle: Florian Stange und Oliver Spott/UFZ

Neben dem öffentlich viel diskutierten Treibhausgas Kohlendioxid (CO2) spielt auch das weniger bekannte Lachgas (N2O) eine zentrale Rolle beim Klimawandel. Ähnlich wie beim CO2 ist auch für Lachgas seit Beginn der Industrialisierung ein starker Anstieg der atmosphärischen Konzentration zu beobachten. Die Konzentration von Kohlendioxid innerhalb der Atmosphäre liegt zwar etwa um den Faktor 1000 höher als die Lachgaskonzentration, jedoch ist Lachgas 300fach stärker in seiner Treibhauswirkung als Kohlendioxid. Die Zunahme der N2O-Konzentration in der Atmosphäre beruht im Gegensatz zu CO2 nur in einem geringeren Umfang auf der Verbrennung fossiler Brennstoffe. Der weitaus größte Teil der vom Menschen verursachten N2O-Freisetzung lässt sich auf die im Übermaß in die Umwelt eingetragenen stickstoffhaltigen Nährstoffe (wie zum Beispiel Nitrat / NO3-) zurückführen, die durch natürliche mikrobielle Prozesse (Nitrifikation und Denitrifikation) zum Treibhausgas N2O umgesetzt werden. Eines der zentralen Anliegen der Europäischen Wasserrahmenrichtlinie (WRRL) aus dem Jahre 2000 ist die Reduktion stickstoffhaltiger Nährstoffe in Gewässern. Ein Weg ist es, den Einsatz stickstoffhaltiger Dünger in der Landwirtschaft zu vermeiden oder zu optimieren. Ein anderer ist die Verbesserung von Technologien zur Abwasserreinigung.

Aktuelle biologische Reinigungsverfahren setzen dabei auf die mikrobiellen Prozesse der Nitrifikation und der Denitrifikation. Diese ermöglichen zwar eine biologisch unbedenkliche Reinigung von Abwässern mit hohen Stickstoffbelastungen, sie haben aber auch einen entscheidenden Nachteil: Der zu entfernende Stickstoff wird vor allem in Form des Treibhausgases N2O in die Atmosphäre freigesetzt. Ein Dilemma, denn Wasserschutz und Klimaschutz schlossen sich so bisher gegenseitig aus.

Im Rahmen von experimentellen Versuchen zur Abwasserreinigung stickstoffbelasteter Abwässer wurde Anfang der 90er Jahre ein bisher unbekannter mikrobieller Prozess entdeckt, welcher in der Lage ist, die Hauptkomponenten der Stickstoffbelastung (Ammonium und Nitrat) unter Abwesenheit von Luftsauerstoff (anaerob) im Abwasser abzubauen, wobei als Endprodukt ausschließlich umweltneutraler molekularer Stickstoff (N2) entsteht. Die Ausnutzung dieses so genannten Anammox-Prozesses zur Reinigung von stickstoffbelasteten Abwässern könnte zukünftig eine vollständig klimaneutrale Reinigung von kommunalen Abwässern ermöglichen. Hinzu kommt, dass der Anammox-Prozess im Gegensatz zu den bisherig eingesetzten mikrobiellen Prozessen nicht auf organische Nährstoffe angewiesen ist, so dass zukünftig auf die bisher erforderliche Zugabe von Nährstoffen während des Reinigungsprozesses verzichtet werden kann. Das verringert die Kosten der Abwasserreinigung zusätzlich.

Gerade im Hinblick auf die Entwicklung effizienter Abwasserreinigungssysteme bereitet die Erforschung des Anammox-Prozesses jedoch auch mehr als 15 Jahre nach seiner Entdeckung immer noch große Schwierigkeiten. Die Hauptursache hierfür liegt darin, dass das zu untersuchende Endprodukt des Anammox-Prozesses (N2) gleichzeitig auch im Zuge der bereits genannten Denitrifikation entstehen kann, so dass eine eindeutige Quantifizierung der Umsatzleistung nahezu unmöglich war. Darüber hinaus ist der mikrobiologisch produzierte molekulare Stickstoff (N2) aufgrund der hohen Hintergrundkonzentration von N2 in der Erdatmosphäre (~79 Vol. %) im Prinzip "unsichtbar", da die freigesetzten Mengen von N2 im Vergleich zum vorhanden Luftstickstoff extrem gering sind. Den beiden Bodenforscher Oliver Spott und Florian Stange vom Helmholtz-Zentrum für Umweltforschung (UFZ) ist es nun erstmals gelungen, ein neues mathematisches Modell zu entwickeln, welches die Mengen an N2 aus einem Mix aus Anammox, Denitrifikation und Atmosphäre exakt zuordnen und quantifizieren kann. Es basiert auf Untersuchungen mit stabilen Isotopen. Somit können zukünftig die Optimalbedingungen für eine mikrobiologische Reinigung stickstoffbelasteter Abwässer mittels des Anammox-Prozesses besser untersucht werden, wodurch die Kosten der Abwasserreinigung langfristig gesenkt, der Wirkungsgrad erhöht und die Freisetzung von N2O vermieden werden kann. Ihre Entdeckung haben die beiden Wissenschaftler in der international renommierten Fachzeitschrift Rapid Communications in Mass Spectrometry veröffentlicht.

Die Idee zur Entwicklung des neuen mathematischen Ansatzes mit dem stabilen Stickstoff-Isotops 15N ergab sich aus der Kooperation mit den UFZ-Kollegen Peter Kuschk und Diego Paredes, welche sich seit längerer Zeit mit den Möglichkeiten einer mikrobiellen Reinigung stickstoffbelasteter Abwässer mittels Anammox beschäftigen. Aber nicht zuletzt auch für ihre eigene Arbeit haben die neu entwickelten Gleichungen eine große Bedeutung. 1992 wurde erstmals von japanischen Wissenschaftlern ein Stoffwechselprozess von Bodenpilzen (Fusarium Oxysporum) beschrieben, welcher dem Prozess der anaeroben Oxidation von Ammonium sehr ähnlich ist und welcher in Anlehnung an den bereits bekannten Prozess der Denitrifikation als Codenitrifikation bezeichnet wurde. Ungeachtet dessen geht man jedoch auch 15 Jahre nach der Entdeckung der Codenitrifikation immer noch davon aus, dass beim Abbau von Stickstoff aus dem Boden nur die Denitrifikation für die Freisetzung von molekularem Stickstoff (N2) verantwortlich ist. Mittels des Einsatzes der 15N-Isotopen-Technik und des neu entwickelten mathematischen Ansatzes kann nun die N2-Freisetzung des Erdbodens im Zuge der beiden Prozesse Denitrifikation und Codenitrifikation präzise bestimmt werden. Eine erste noch junge Studie zweier britischer Wissenschaftler kam bereits zu dem überraschenden Ergebnis, dass bis zu 92 Prozent des mikrobiell freigesetzten N2 auf den Prozess der Codenitrifikation zurückzuführen sind. Wenn sich diese ersten Erkenntnisse bestätigen und darüber hinaus auch auf andere Böden weltweit übertragen lassen, würde dies das derzeitige Verständnis über die N2-Freisetzung aus dem Erdboden komplett verändern. Mit Hilfe der neu entwickelten Gleichungen werden sich die Wissenschaftler Oliver Spott und Florian Stange in Kooperation mit internationalen Wissenschaftlern dieser Frage widmen.

 

Quellen und Artikel:

-

Spott O, Stange CF:
A new mathematical approach for calculating the contribution of anammox, denitrification, and atmosphere to an N2 mixture based on a 15N tracer technique.
Rapid Communications in Mass Spectrometry 21 (14), 2007, p.2398-2406; DOI: 10.1002/rcm.3098

-

Spott O, Russow R, Apelt B, Stange CF:
A 15N-aided artificial atmosphere gas flow technique for online determination of soil N2 release by using the Zeolithe Köstrolith SX6®.
Rapid Communications in Mass Spectrometry 20 (21), 2006, p. 3267-3274; DOI: 10.1002/rcm.2722

-

Arbeitsgruppe "Stabile Isotope und Biogeochemische Kreisläufe - SIBC" am Helmholtz-Zentrum für Umweltforschung (UFZ) in Halle/S

-

Homepage von Prof. Dr. Florian Stange

-

Homepage von Oliver Spott

-

Quelle: Das Helmholtz-Zentrum für Umweltforschung - UFZ wurde 1991 gegründet und beschäftigt an den Standorten Leipzig, Halle/S. und Magdeburg 830 Mitarbeiter. Es erforscht die komplexen Wechselwirkungen zwischen Mensch und Umwelt in genutzten und gestörten Landschaften, insbesondere dicht besiedelten städtischen und industriellen Ballungsräumen sowie naturnahen Landschaften. Die Wissenschaftler des UFZ entwickeln Konzepte und Verfahren, die helfen sollen, die natürlichen Lebensgrundlagen für nachfolgende Generationen zu sichern.

 

Weitere Informationen:

-

... zum Thema (Hintergrundinformationen, Forschungsartikel etc.): Siehe Menüleiste oben links

-

Ihre Pressemitteilung veröffentlichen ...


Suche nach themenverwandten Internetseiten:


Google

 


 

Internetchemie © 2007 - 2008 A. J. - aktualisiert am 03.04.2008