|
Die kinetische Terahertz-Absorption (KITA) verwendet Pikosekundenpulse, um Solvatationsdynamiken während Selbstorganisationsprozessen auf der Zeitskala zwischen Millisekunden bis Sekunden zu erfassen. Die Anwendung der Methode zur Untersuchung der Umorganisation des Wassersolvats bei der Faltung eines Proteins (hier: Ubiquitin) beschreiben M. Gruebele et al. in der Angewandte Chemie, Volume 120 Issue 34, vom 11. August 2008
Bildquelle: RUB, Wiley
|
Proteine ordnen das Wasser Aus ihren vorangegangenen Arbeiten wussten die Forscher aus Bochum und der University of Illinois, dass Proteine das Wasser in ihrer Umgebung stark beeinflussen: Im unbeeinflussten Wasser werden die Wasserstoffbrückenbindungen zwischen den einzelnen Molekülen ca. alle 1,3 Picosekunden geöffnet und geschlossen - es herrscht ziemliche Unordnung. Schon kleine Konzentrationen von Proteinen bringen die Wassermoleküle allerdings mehr auf Linie: Die dynamischen Bewegungen des Wassernetzwerkes werden durch das Protein verändert. Bekannt war ebenfalls, dass gefaltete Proteine einen deutlich anderen Einfluss auf die Wassermoleküle ausüben als ungefaltete. Die KITA-Spektroskopie erlaubte jetzt erstmals Einblicke in die Zeit zwischen diesen beiden Zuständen. Wasser und Protein sind stark gekoppelt Bei der KITA-Spektroskopie werden kurze Terahertz-Pulse ausgesandt, die in Millisekundenauflösung Einzelbilder des beobachteten Prozesses liefern. Die Chemiker starteten den Proteinfaltungsprozess und zeichneten dann die Geschehnisse auf. Es zeigte sich, dass schon binnen weniger als zehn Millisekunden sowohl die Bewegungen des Wassernetzwerks verändert waren, als auch das Protein sich umstrukturierte. "Diese beiden Prozesse laufen praktisch gleichzeitig ab", so Prof. Havenith-Newen, "sie sind stark aneinander gekoppelt." Diese Beobachtung unterstützt die noch umstrittene Annahme, dass das Wasser an der Proteinfaltung, und somit auch an der Proteinfunktion, erheblich beteiligt ist und nicht passiv bleibt. Erst dann findet im Protein ein zweiter wesentlich langsamerer Schritt (über einen Zeitraum von 0,9 Sekunden) statt, bei dem es die endgültige, gefaltete Struktur einnimmt. Förderung durch HFSP Die Arbeiten wurden durch das Human Frontier Science Programme (HFSP) finanziert. Martin Gruebele war als Friedrich-Wilhelm Besselpreisträger der Alexander von Humboldtstiftung an der Fakultät für Chemie der RUB.
|