|
Professor Tobias Hertel und zwei seiner Diplomanden, Sabine Himmelein und Thomas Ackermann, zeigen das Modell einer Kohlenstoff-Nanoröhre.
Foto: Robert Emmerich
|
Professor Tobias Hertel von der Universität Würzburg interessiert sich vor allem für die optischen Eigenschaften der Nanoröhren. Für die Art, wie sie Lichtenergie aufnehmen, weiterleiten und wieder abgeben. "Das Wissen über diese Vorgänge ist grundlegend für spätere Anwendungen, etwa in der Photovoltaik oder der Fluoreszenz-Mikroskopie", sagt der Inhaber des Lehrstuhls für Physikalische Chemie II. Zusammen mit Kollegen aus Mailand hat er einen speziellen Röhrentyp untersucht, die (6,5)-Nanoröhren. Werden die mit Energie in Form von Laserpulsen beschossen, entstehen in dem Kohlenstoffgerüst so genannte Exzitonen. "Das sind, vereinfacht gesagt, energetisch angeregte Elektronen, die sich auf Kreisbahnen bewegen und innerhalb der Nanoröhre mobil sind", erklärt der Würzburger Professor. Welt-Premiere: die Größe von Exzitonen gemessen Bislang ließ sich die Ausdehnung von Exzitonen in Festkörpern nur theoretisch berechnen. Doch den Forschern aus Mailand und Würzburg ist es jetzt erstmals überhaupt gelungen, die Größe von Exzitonen experimentell zu bestimmen. Eine Welt-Premiere also und Grund genug für die renommierte Zeitschrift Nature Physics, über die Arbeit zu berichten. "Die Exzitonen in den Nanoröhren sind größer als angenommen", sagt Tobias Hertel, "nämlich zwei millionstel Millimeter". Das ist etwas größer als der Durchmesser der Röhren und hat zur Folge, dass sich die Exzitonen in den Röhren nur in zwei Richtungen bewegen können - wie ein großes Schiff, das in einem engen Kanal nur vor- oder rückwärts fahren kann, nicht aber seitwärts. Wichtig: die Beweglichkeit der Exzitonen Wie es um die Beweglichkeit in den Nanoröhren steht, ist für die Würzburger Forscher besonders interessant. Sind die Exzitonen nämlich sehr mobil, erreichen sie mit hoher Wahrscheinlichkeit das Ende der Röhren - was den Wissenschaftlern nicht gefallen würde. Denn in diesem Fall geben die Exzitonen die zuvor aufgenommene Energie fast komplett in Form von Wärme ab. Tobias Hertels Team allerdings will die Exzitonen dazu bringen, dass sie ihre Energie als Licht abstrahlen, dass sie fluoreszieren. Denn: "Eines unserer Ziele ist es, aus Nanoröhren fluoreszierende Farbstoffe für die biomedizinische Forschung zu entwickeln." Mit solchen Farbstoffen könnte sich zum Beispiel die Funktionsweise von Proteinen in Zellen nachweisen lassen. Weiter: die nächsten Forschungsschritte Die Größe von Exzitonen in Nanoröhren lässt sich nun also messen. Jetzt können die Forscher darangehen, die Begleitumstände im Experiment zu verändern. "Können wir Größe und Mobilität der Exzitonen in unserem Sinn beeinflussen, wenn wir die Nanoröhren in spezielle Flüssigkeiten bringen? Diese Frage wollen wir als nächstes klären", so Tobias Hertel. Womöglich lässt sich dadurch die Fluoreszenz der Röhren weiter verbessern.
|