[ Sitemap ] [ Kontakt ] [ Impressum ] [ ]   


Home


Aktuelles

- Mehr Chemie Nachrichten

- Neueste Forschungsartikel

- Stellenmarkt Chemie


Chemie A bis Z

- Index Chemie

- Chemikalien

- Produkte und Firmen


About Internetchemie

- Internetchemie

- Impressum


English News



Publiziert am 28.02.2008 Infos zum Internetchemie RSS News Feed

Kunststoffe instabiler als angenommen - Zugkräfte lassen Bindungen schmelzen


 
Wissenschaftler der Hochschule München und der Christian-Albrechts-Universität Kiel weisen nach, dass Kunststoffe instabiler sind als bislang angenommen.

Die Lebensdauer von chemischen Bindungen in Kunststoffen lässt sich durch anhaltende Krafteinwirkung drastisch verkürzen, so dass es schon bei wesentlich geringeren Zugkräften als bisher angenommen zur Zerstörung der Bindungen und damit zum Materialversagen kommen kann. Dies konnten Wissenschaftler der Hochschule München in Zusammenarbeit mit der Christian-Albrechts-Universität Kiel nachweisen. Mit einem Rasterkraftmikroskop haben sie den Kraftverlauf bei der Dehnung von kovalenten Silizium-Kohlenstoff-Bindungen in Polymer-Molekülen bis hin zum Zerreißen untersucht und das Verhalten mit einem theoretischen Modell erklärt. Die Arbeit, die im Rahmen des Exzellenz-Clusters "Nanosystems Initiative Munich" (NIM) entstand, wurde jetzt vorab in der Online-Ausgabe der Fachzeitschrift "Journal of the American Chemical Society" (JACS) veröffentlicht.

Unvorhergesehenes Materialversagen kann weit reichende Folgen haben, zum Beispiel wenn ein Bungee-Seil reißt, ein Reifen platzt oder das Dach einer Halle einstürzt. Aus diesem Grund möchten MaterialwissenschaftlerInnen möglichst genau verstehen, welche physikalischen Vorgänge ablaufen, wenn Materialien einer Belastung nicht mehr standhalten können. Reißt zum Beispiel ein Kunststoff-Seil, dann liegt das daran, dass sich die chemischen Bindungen zwischen den Atomen der Polymer-Struktur aufgrund der anliegenden Kräfte lösen. Dabei ist man bisher immer davon ausgegangen, dass die Zugbelastung die maximale Bindungskraft überschreiten muss, um eine Bindung aufzutrennen.

Der Diplom-Ingenieur Sebastian Schmidt in der Arbeitsgruppe von Professor Hauke Clausen-Schaumann an der Hochschule München konnte in Zusammenarbeit mit dem Chemie-Professor Martin Beyer von der Christian-Albrechts-Universität Kiel nun nachweisen, dass sich die in Polymeren vorherrschenden kovalenten Bindungen schon bei einer Zugbelastung lösen, die weit unterhalb der maximalen Bindungskraft liegt. Einzige Bedingung: die Zugbelastung muss über einen gewissen Zeitraum andauern.

Um zu diesem Ergebnis zu gelangen, haben die Forscher mit der Spitze eines Rasterkraftmikroskops (AFM) Moleküle des Zucker-ähnlichen Polymers Carboxymethylamylose mit verschiedenen Zuggeschwindigkeiten bis zum Zerreißen gedehnt und dabei den Kraftverlauf gemessen. So konnte gezeigt werden, dass die für die Stabilität der Verbindung maßgeblichen Silizium-Kohlenstoff-Bindungen schon bei geringen aber anhaltenden Kräften zerstört werden. Eine Erklärung haben die Wissenschaftler dafür auch parat: Durch die angelegte Kraft wird die Bindungsenergie so weit abgesenkt, dass die Bindung bereits bei Raumtemperatur thermisch zerstört werden kann. Ihre Lebensdauer reduziert sich dadurch auf Sekundenbruchteile und die Bindung löst sich blitzschnell auf. Das dahinter steckende theoretische Modell liefert die so genannte Arrhenius-Gleichung, deren Gültigkeit für den Abriss kovalenter Bindungen bisher noch nicht bewiesen werden konnte. Dieser Beweis ist den Münchner Wissenschaftlern jetzt mit ihrem Experiment gelungen.

Diese grundlegenden Erkenntnisse könnten zu einem tieferen Verständnis von Materialermüdung und Materialversagen beitragen und der Entwicklung neuer Kunststoffe dienen, die außergewöhnlich lang anhaltenden Belastungen widerstehen sollen.

Die vorab in der Online-Ausgabe der Fachzeitschrift "Journal of the American Chemical Society" veröffentlichte Arbeit wurde vom Exzellenz-Cluster "Nanosystems Initiative Munich" (NIM) unterstützt, das es sich zum Ziel gesetzt hat, funktionale Nanostrukturen für Anwendungen in der Medizin und in der Informationsverarbeitung zu entwickeln und zu erforschen.

 

Quellen und Artikel:

-

Sebastian W. Schmidt, Martin K. Beyer, and Hauke Clausen-Schaumann:
Dynamic Strength of the Silicon-Carbon Bond Observed over Three Decades of Force-Loading Rates.
In: Journal of the American Chemical Society; Web Release Date: 27-Feb-2008; DOI: 10.1021/ja710642a.

-

Quellen: Hochschule München, Fakultät für Feinwerk- und Mikrotechnik, Physikalische Technik

-

Christian-Albrechts-Universität zu Kiel; Institut für Physikalische Chemie

-

Nanosystems Initiative Munich

 

Weitere Informationen:

-

Ihre Pressemitteilung veröffentlichen ...


Suche nach themenverwandten Internetseiten:


Google

 


 

Internetchemie © 2007 - 2008 A. J. - aktualisiert am 15. Januar 2012