[ Sitemap ] [ Contact ] [ Imprint ] [ News in German ]   


Home


Current News

- Chemistry News

- Current Research Articles

- Job Market

- Chemistry Conferences


Chemistry A to Z

- Chemistry Index

- Chemicals

- Products and Companies


About Internetchemistry

- Internetchemistry

- Imprint


News in German News in German



Published: 28-Jan-2008 Get Internetchemistry RSS News Feed

Lithium and Beryllium No Longer "Lack Chemistry"


 
Scientists predict antisocial metals will bond under high-pressure conditions.

Even though the lightest known metals in the universe, lithium (Li) and beryllium (Be), do not bind to one another under normal atmospheric or ambient pressure, an interdisciplinary team of Cornell scientists predicted in the Jan. 24 issue of Nature that Li and Be will bond under higher levels of pressure and form stable Li-Be alloys that may be capable of superconductivity. Superconductivity is the flow of electricity with zero resistance.

The Inorganic, Bioinorganic and Organometallic Chemistry program at the National Science Foundation (NSF) supported the research because little work had been done to predict the properties of metals under high pressure.

Lithium (Li) and beryllium (Be) form no compounds under normal atmospheric pressure. But under high pressure at least four ordered alloys of these elements are predicted. The bottom left structure is the most unexpected predicted alloy and may have potential for superconductivity.

Credit: Ji Feng, Richard G. Hennig, N.W. Ashcroft, and Roald Hoffmann

"We found that chemists working on inorganic compounds and inorganic reactions under high pressure were interested in the predictions and felt it would stimulate useful interactions between theorists and experimentalists," said NSF Program Manager Michael Clarke.

Of the four stable Li-Be alloys predicted by the scientists' computational study, the alloy with the ratio of one Li atom to one Be atom (LiBe) shows the greatest potential for superconducting applications.

A most unexpected finding in the study is the predicted existence of two-dimensional electron gas layers within a tightly compressed three-dimensional LiBe compound.

"It's like taking a nice layer cake, squeezing the hell out of it, and lo and behold, out of what would be expected to be a jumbled-up mess, there emerges a neat hazelnut cream layer," said co-author Roald Hoffmann, the 1981 chemistry Nobel laureate and Cornell's Frank H.T. Rhodes Professor in Humane Letters Emeritus.

But it makes sense, according to co-author Neil Ashcroft, Cornell's Horace White Professor of Physics Emeritus. When layers of Li and Be are squeezed together at elevated pressures ranging from five to 10 times greater than the pressure at which diamond forms, outer electrons from the Li layer get squeezed into the vicinity of the Be layer, forming two-dimensional gas layers.

"It is extraordinary that such remarkably two-dimensional behavior emerges from the conjunction of two such �simple' constituents. It is actually a fine example of �emergent' phenomena," Ashcroft said. He added that they do not yet know whether their theoretical Li-Be alloys will become notable superconductors but creating and testing the compounds would be relatively simple.

LiBe alloy

At standard atmospheric or ambient pressure, the lithium beryllium (LiBe) alloy is unstable. However, at high density and at relatively high pressure, the predicted alloy stabilizes. As the atoms are squeezed in tightly, lithium's ionic cores (the larger of the two) begin to overlap. This creates a sort of "wall" that forces the outer (valence) electrons out of the lithium layer, and over to the beryllium layer. It is there that the electrons form a curious two-dimensional gas. In contrast, electrons in most metals bounce about quite freely in a three-dimensional fashion.

Credit: Zina Deretsky, National Science Foundation

Ji Feng, now a postdoctoral researcher at Harvard, is lead author of the Nature paper. Richard Hennig, a Cornell assistant professor in materials science and engineering, is an additional co-author of the paper.

The research was supported by NSF Division of Chemistry grant #0613306; Division of Materials Research grant #0601461; and Division of Earth Sciences grant #0703226.



 

Further Information and Source:

-

Ji Feng, Richard G. Hennig, N. W. Ashcroft & Roald Hoffmann:
Emergent reduction of electronic state dimensionality in dense ordered Li-Be alloys.
In: Nature 451, 445-448; 24 January 2008; doi: 10.1038/nature06442.

-

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of $5.92 billion. NSF funds reach all 50 states through grants to over 1,700 universities and institutions. Each year, NSF receives about 42,000 competitive requests for funding, and makes over 10,000 new funding awards. The NSF also awards over $400 million in professional and service contracts yearly.

 

Related Information:

-

Lithium, Beryllium

-

Publish your Press Release


Related topics - search form:


Google


 

Internetchemistry � 2007 - 2008 A. J. - last update April 25, 2011