[ Sitemap ] [ Contact ] [ Imprint ] [ News in German ]   


Home


Current News

- Chemistry News

- Current Research Articles

- Job Market

- Chemistry Conferences


Chemistry A to Z

- Chemistry Index

- Chemicals

- Products and Companies


About Internetchemistry

- Internetchemistry

- Imprint


News in German News in German



Published: 23-Jan-2008 Get Internetchemistry RSS News Feed

Researchers develop darkest manmade material


 
Carbon nanotube array absorbs light, could boost solar energy conversion.

Troy, N.Y. � Researchers at Rensselaer Polytechnic Institute and Rice University have created the darkest material ever made by man.

The material, a thin coating comprised of low-density arrays of loosely vertically-aligned carbon nanotubes, absorbs more than 99.9 percent of light and one day could be used to boost the effectiveness and efficiency of solar energy conversion, infrared sensors, and other devices. The researchers who developed the material have applied for a Guinness World Record for their efforts.

Darkest manmade material

The new darkest manmade material, with its 0.045 percent reflectance (center), is noticeably darker than the 1.4 percent NIST reflectance standard (left) and a piece of glassy carbon (right).

Measuring the Darkest Manmade Material

The vertically aligned carbon nanotube samples were mounted in the center of a integrating sphere, which measured the material's reflectivity.

SEM of Darkest Manmade Material

A side-view scanning electron micrograph of the darkest material at a high magnification. The nanotubes are vertically aligned, forming a highly porous nanostructure.

Images � by Rensselaer

�It is a fascinating technology, and this discovery will allow us to increase the absorption efficiency of light as well as the overall radiation-to-electricity efficiency of solar energy conservation,� said Shawn-Yu Lin, professor of physics at Rensselaer and a member of the university�s Future Chips Constellation, who led the research project. �The key to this discovery was finding how to create a long, extremely porous vertically-aligned carbon nanotube array with certain surface randomness, therefore minimizing reflection and maximizing absorption simultaneously.�

The research results were published in the journal Nano Letters.

All materials, from paper to water, air, or plastic, reflect some amount of light. Scientists have long envisioned an ideal black material that absorbs all the colors of light while reflecting no light. So far they have been unsuccessful in engineering a material with a total reflectance of zero.

The total reflectance of conventional black paint, for example, is between 5 and 10 percent. The darkest manmade material, prior to the discovery by Lin�s group, boasted a total reflectance of 0.16 percent to 0.18 percent.

Lin�s team created a coating of low-density, vertically aligned carbon nanotube arrays that are engineered to have an extremely low index of refraction and the appropriate surface randomness, further reducing its reflectivity. The end result was a material with a total reflective index of 0.045 percent � more than three times darker than the previous record, which used a film deposition of nickel-phosphorous alloy.

�The loosely-packed forest of carbon nanotubes, which is full of nanoscale gaps and holes to collect and trap light, is what gives this material its unique properties,� Lin said. �Such a nanotube array not only reflects light weakly, but also absorbs light strongly. These combined features make it an ideal candidate for one day realizing a super black object.�

�The low-density aligned nanotube sample makes an ideal candidate for creating such a super dark material because it allows one to engineer the optical properties by controlling the dimensions and periodicities of the nanotubes,� said Pulickel Ajayan, the Anderson Professor of Engineering at Rice University in Houston, who worked on the project when he was a member of the Rensselaer faculty.

The research team tested the array over a broad range of visible wavelengths of light, and showed that the nanotube array�s total reflectance remains constant.

�It�s also interesting to note that the reflectance of our nanotube array is two orders of magnitude lower than that of the glassy carbon, which is remarkable because both samples are made up of the same element � carbon,� said Lin.

This discovery could lead to applications in areas such as solar energy conversion, thermalphotovoltaic electricity generation, infrared detection, and astronomical observation.

Other researchers contributing to this project and listed authors of the paper include Rensselaer physics graduate student Zu-Po Yang; Rice postdoctoral research associate Lijie Ci; and Rensselaer senior research scientist James Bur.

The project was funded by the U.S. Department of Energy�s Office of Basic Energy Sciences and the Focus Center New York for Interconnects.

Lin�s research was conducted as part of the Future Chips Constellation at Rensselaer, which focuses on innovations in materials and devices, in solid state and smart lighting, and applications such as sensing, communications, and biotechnology. A new concept in academia, Rensselaer constellations are led by outstanding faculty in fields of strategic importance. Each constellation is focused on a specific research area and comprises a multidisciplinary mix of senior and junior faculty, as well as postdoctoral researchers and graduate students.



 

Further Information and Source:

-

Zu-Po Yang, Lijie Ci, James A. Bur, Shawn-Yu Lin, and Pulickel M. Ajayan:
Experimental Observation of an Extremely Dark Material Made By a Low-Density Nanotube Array.
In: Nano Letters: Nano Lett., ASAP Article; Web Release Date: January 9, 2008; doi: 10.1021/nl072369t.

-

Rensselaer Polytechnic Institute, founded in 1824, is the nation�s oldest technological university. The university offers bachelor�s, master�s, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

 

Related Information:

-

Current research articles in the field of nanochemistry

-

Publish your Press Release


Related topics - search form:


Google


 

Internetchemistry � 2007 - 2008 A. J. - last update April 25, 2011