Professor Andy Cooper, Director of the Centre for Materials Discovery at the University's Department of Chemistry, explains: "Many natural gas reserves are geographically remote and can only be extracted via pipelines, so there is a need to look for other ways to transport the gas. It has been suggested that methane gas hydrate could be used as a way of containing methane gas for transportation. The disadvantage of methane gas hydrate for industry use is that it is formed at a very slow rate when methane reacts with water under pressure. "To counteract these difficulties we used a method to break water up into tiny droplets to increase the surface area in contact with the gas. We did this by mixing water with a special form of silica – a similar material to sand – which stops the water droplets from coalescing. This 'dry water' powder soaks up large quantities of methane quite rapidly at around water's normal freezing point." The team also found that 'dry water' could be more economical than other potential products because it is made from cheap raw materials. The material may also have industrial applications if methane could be stored more conveniently and used to power clean vehicles. Chemists at Liverpool are now investigating ways to store larger quantities of methane gas at higher temperatures and lower pressures as part of a project funded by the UK Engineering and Physical Sciences Research Council (EPSRC). The Centre for Materials Discovery is accessible to all businesses across the Northwest and UK and enables small, medium, and large industries across a range of sectors to move rapidly into the next generation of materials science. Businesses are given access to state-of-the-art research facilities supported by highly trained staff and a base of academic expertise. The University of Liverpool is a member of the Russell Group of leading research-intensive institutions in the UK. It attracts collaborative and contract research commissions from a wide range of national and international organisations valued at more than £108 million annually.
|