Viele poröse Materialien sind in der Lage, CO2 und andere Gasmoleküle aufzunehmen. CO2 bei Raumtemperatur und Atmosphärendruck selektiv aus industriellen Abgasen herauszuholen, die gleichzeitig andere Gase wie Stickstoff, Methan oder Wasser enthalten, ist jedoch nach wie vor eine große technische Herausforderung. Das Forscherteam hat jetzt porösese dreidimensionale Netzwerke aus so genannten Koordinationspolymeren entwickelt. Als Bausteine dienen verschiedene Nickelkomplexe und organische Moleküle. Diese lagern sich zu zweidimensionalen gitterartigen Flächen zusammen, die gestapelt vorliegen und über „Säulen“ verbunden sind. Der besondere Trick dabei: Die Säulen sind nicht starr, sondern sehr flexibel. Dadurch sind die entstehenden Hohlräume der Struktur von variabler Größe und können sich eingelagerten Gastmolekülen anpassen.
|
Abbildung:
3D-Koordinationspolymere mit flexiblen Säulen (links im Bild)
adsorbieren CO2 hoch selektiv gegenüber N2,
H2 und CH4 (rechts im Bild), sind bis 300
°C thermisch stabil sowie luft- und wasserbeständig und
ermöglichen eine effiziente CO2-Bindung, -Speicherung
und -Identifizierung.
[Bildquelle: Wiley-VCH, Angewandte Chemie] |
Das symmetrische Molekül Kohlendioxid besitzt ein permanentes elektrisches Quadrupolmoment, das man als zwei Rücken an Rücken liegende elektrische Dipole mit entgegengesetzter Richtung beschreiben könnte. Dieser Quadrupol tritt mit dem dreidimensionalen Gitter in Wechselwirkung und bringt die Säulen dazu, die „Tore“ zu öffnen, sodass das Gas in die Hohlräume eintreten kann. Im Gegensatz dazu zeigen Stickstoff, Wasserstoff und Methan ein wesentlich kleineres Quadrupolmoment. Für sie bleiben die Poren verschlossen. Dass der in Luft reichlich vorhandene Stickstoff draußen bleiben muss, ist für einen potenziellen CO2-Fänger essenziell. Zudem sind die neuen nickelhaltigen Materialien auch noch bei Temperaturen von 300 °C stabil und gegenüber Luft und Wasser beständig – auch dies sind wichtige Voraussetzungen für einen eventuellen industriellen Einsatz. Wird der Umgebungsdruck reduziert, wird das gespeicherte CO2 wieder freigesetzt. Ein solches Material wäre daher für Prozesse geeignet, in denen Kohlendioxid durch einen Druckwechsel zyklisch gespeichert und wieder freigesetzt werden soll.
|