|
Abbildung 1: An der Oberfläche des Gewässergrundes atmen Bakterien mit Sauerstoff (blaue Ovale), während sie in tieferen, sauerstofffreien Schichten mit Nitrat atmen (orange Ovale). Die Produkte der Nitratatmung sind überwiegend Stickstoffgas (N2) und zu einem kleinen Teil Lachgas (N2O), die beide in die Wassersäule gelangen. Kleinstiere am Gewässergrund fressen organische Partikel, denen Bakterien anhaften. Im sauerstofffreien Darm müssen auch diese Bakterien zur Nitratatmung übergehen und produzieren dabei überwiegend Lachgas. Denn die Verweilzeit im Darm ist zu kurz, um Lachgas vollständig zu Stickstoffgas umzusetzen. Über die Wohnröhre des Tieres wird deshalb vor allem Lachgas in die Wassersäule abgegeben.
Bildquelle: Peter Stief, MPI Bremen
|
|
Abbildung 2: Die Zuckmückenlarve Chironomus plumosus ist in vielen Binnengewässern die vorherrschende Insektenart. Die Larve lebt verborgen in einer U-förmigen Wohnröhre im Gewässerboden (hier in einer Glasröhre fotografiert), durch die sie periodisch Wasser pumpt. Dadurch gelangt sie zum einen an Sauerstoff zum Atmen, zum anderen an Nahrungspartikel, die sich in einem von der Larve gesponnenen Netz verfangen.
Foto: Christian Lott, MPI Bremen / HYDRA
|
Peter Stief vom Max-Planck-Institut für Marine Mikrobiologie in Bremen und seine Kollegen von der Universität Aarhus, Dänemark, untersuchten insgesamt 21 verschiedene Kleintierarten aus Seen, Fließgewässern und dem Meer. Dabei stellten sie fest, dass die Menge an freigesetztem Lachgas stark von der Ernährung der Tiere abhing. Räuberische Tiere trugen kaum zur Lachgasproduktion bei. Besonders hohe Raten fanden sich hingegen bei so genannten Filtrierern und Detritusfressern, die organisches Material aus dem Gewässergrund und aus Schwebstoffen filtern. Stief und seine Kollegen zeigen nun: das liegt an den Bakterien, die die Tiere mit der Nahrung aufnehmen. "Experimente mit Zuckmückenlarven (Abb. 2) ergaben, dass das Lachgas von den Bakterien im Darm der Tiere gebildet wird", erklärt Peter Stief. "Die aus der Nahrung stammenden Bakterien finden im Darm keinerlei Sauerstoff vor und gehen deswegen zur sogenannten Nitratatmung über." Bei dieser Art zu atmen wird aus Nitrat Lachgas gebildet. In ihrem natürlichen Lebensraum, dem Gewässergrund, setzen nitratatmende Bakterien Lachgas weiter zu klimaunschädlichem Stickstoffgas um. Im Darm allerdings ist die Verweilzeit der Bakterien zu kurz, um alle erforderlichen Stoffwechselschritte durchzuführen. Nach zwei bis drei Stunden werden sie quasi auf halber Strecke von den Insektenlarven wieder ausgeschieden. Das bis dahin gebildete Lachgas wird frei (Abb. 1). Die Lachgasemissionen sind besonders in nitratreichen Gewässern bedeutsam. Erhöhter Nährstoffeintrag, beispielsweise aus Düngemitteln, erhöht die Konzentration von Nitrat in vielen Flüssen, Seen und Küstengewässern und steigert in der Folge auch die Freisetzung des Treibhausgases. In solchen nährstoffreichen Gewässern sind Filtrierer und Detritusfresser oft besonders zahlreich. "Die gute Nachricht lautet also, dass sich der Einsatz für saubere Gewässer und geringere Nitrateinträge aus der Landwirtschaft positiver auf unser Klima auswirken könnte, als bisher angenommen", erläutert Mitautor Lars Peter Nielsen von der Universität Aarhus. "Die schlechte Nachricht ist allerdings, dass sich weltweit die Gewässerqualität gerade wegen der ständig steigenden Nährstoffeinträge weiter verschlechtert." Der tatsächliche Beitrag der aquatischen Kleinstiere zur Belastung der Atmosphäre mit Lachgas lässt sich zur Zeit nur schwer abschätzen. "Aber es steht zu befürchten, dass er in Zukunft eher ansteigen als sinken wird." In Seen können die Insektenlarven Dichten von 1000en bis 10000en Larven pro Quadratmeter erreichen. Bei einer Tierdichte von etwa 3500 Individuen pro Quadratmeter, wie sie in den beschriebenen Experimenten vorlag, erhöht sich die Abgabe von Lachgas aus dem Gewässerboden immerhin um das Achtfache im Vergleich zu einem Boden ohne Tiere. Peter Stief führte die vorliegende Studie während eines zweijährigen Aufenthaltes an der Universität Aarhus im Rahmen eines von der Europäischen Union geförderten Marie Curie-Stipendiums durch. Zurück am Max-Planck-Institut, wird er zusammen mit deutschen und dänischen Kollegen und Kolleginnen den Vorgängen weiter auf den Grund gehen. Dabei werden sie ihre Untersuchungen auf Meerestiere ausdehnen und ein besonderes Augenmerk auf die molekularen Hintergründe des Prozesses legen. [Fanni Aspetsberger]
|