|
[Copyright: CAU]
|
Die Ergebnisse der Forscher aus Deutschland, Frankreich, Spanien und Dänemark wurden in
einer Ausgabe der renommierten Fachzeitschrift Physical Review Letters vorgestellt
[siehe unten]. Die Wissenschaftler verwendeten fußballförmige C60-Moleküle, die einen milliardstel Meter Durchmesser haben und aufgrund ihrer chemischen und physikalischen Eigenschaften großes Potenzial für technische Anwendungen in der Materialwissenschaft und der Nanotechnologie bergen. Zunächst hoben die Wissenschaftler eines der Moleküle mit der Spitze eines Rastertunnelmikroskops an. Danach bewegten sie es mit einer Präzision von wenigen billiardstel Metern auf ein zweites Molekül zu. Während der Annäherung gelang es den Physikern, den elektrischen Stromfluss zwischen den beiden Molekülen zu messen. Das Verständnis dieses Stroms, der stark von dem Abstand zwischen den Molekülen abhängt, ist für zukünftige molekülbasierte Elektronik unabdingbar. Die Untersuchung zeigt, dass die Leitfähigkeit zwischen den sich berührenden Molekülen hundertmal geringer ist als für ein einzelnes C60-Molekül und daher nur ein schwacher Strom fließt. Dieses Resultat ist extrem wichtig für neuartige Nanoelektronik, bei der Moleküle dicht gepackt angeordnet sein werden. Denn ungewollte Kurzschlüsse zwischen benachbarten Schaltkreisen könnten mit Hilfe der Moleküleigenschaften unter Kontrolle gebracht werden. Zusätzlich durchgeführte quantenmechanische Berechnungen stehen mit den experimentellen Resultaten im Einklang und sagen ebenfalls eine nur geringe Leitfähigkeit zwischen den Molekülen vorher. Das neu gewonnene Verständnis des elektrischen Stromflusses auf der Nanometerskala ist ein wichtiger Schritt für die Entwicklung von molekularer Elektronik. Zudem eröffnet die von den Forschern vorgeführte extreme Präzision der Manipulation und Kontrolle von einzelnen Molekülen neue Wege zur Erforschung möglicher nanoelektronischer Bauteile.
Abbildung:
Zwei C60-Moleküle in Kontakt (grau). Auf beiden Seiten sind Elektroden zur Strommessung angebracht (gold). Da die Moleküle nur einen milliardstel Meter durchmessen, ist eine extrem hohe Präzision von wenigen billiardstel Metern nötig, um sie kontrolliert zu positionieren. Während der Annäherung untersuchten die Wissenschaftler den Stromfluss durch beide Moleküle.
|