The method of production simply involves heating carbon nanotubes and a metal powder together in a vacuum. It works for all metals that enter into a gaseous phase at relatively low temperatures, such as europium, samarium, ytterbium, and strontium. The metal atoms almost completely fill the cavity inside the carbon nanotubes. Using europium metal and carbon nanotubes with an inner diameter of about 0.76 nm, the researchers were able to obtain wires made of a single chain of individual atoms. This first true one-dimensional nanowires was also stable after one month of exposure to air.
|
Filling the tube: Ultrathin
metal nanowires with diameters of single atoms (ca. 1.7 nm) were
synthesized in high yield by using a nanofilling reaction using
the nanospace of carbon nanotubes (CNTs). As the nanowires are
protected by the wall of the CNTs, they resist oxidation and
structural disintegration even under ambient conditions.
[Credit: 1)] |
By using carbon nanotubes with different inner diameters, ultrafine wires with various diameters could be produced, which were for example formed of two or four atomic chains. In comparison to macroscopic europium crystals, the atomic wires demonstrate significantly different electronic and magnetic properties. The nanowires are an ideal model for the study of one-dimensional phenomena. The researchers now aim to test the properties of the wires with respect to their suitability for use as “wiring” for nanoelectronic components.
|