Menü ausblenden
Menü ausblenden   Internetchemie   |     About   |   Kontakt   |   Impressum   |   Datenschutz   |   Sitemap
Menü ausblenden   Chemie Index   |   Chemie-Lexikon   |   Chemikalien   |   Elemente
Menü ausblenden   Geräte + Instrumente   |  
Menü ausblenden   Jobbörse, Stellenangebote   |  
Menü ausblenden   Crowdfunding Chemie   |     Text veröffentlichen
Home und Neuigkeiten
Chemie A - Z
Produkte, Geräte für Labor und Industrie
Chemikalien und chemische Verbindungen
Stellenbörse für Chemie-Jobs
Impressum, Kontakt
Crowdfunding Chemie

 

Elektronentransfer in biochemischen Systemen

Hilfe von der dunklen Seite: Wissenschaftler können dank Dark-Channel-Fluoreszenz aufklären, wie biochemische Stoffe ihre Funktion ausüben.




Abbildung unten: Innerhalb von nur 7 Femtosekunden wird ein Elektron aus dem Eisen (III)-Komplex durch Lichtanregung in ein neues Orbital verschoben. Dieses neue Orbital entsteht durch Überlapp von Eisen- und Wasserorbital. [Grafik: HZB]
Eisen Elektronentransfer

Spektroskopische Verfahren gehören zu den wichtigsten Methoden, mit denen Wissenschaftler ins Innere von Materialien schauen können.

Ein Team des Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) hat nun mithilfe der Röntgenabsorptionsspektroskopie die Verschiebung von elektrischen Ladungen in gelösten Stoffen beobachtet, den Elektronentransfer. Damit können sie auf mikroskopischer Skala sehen, wie gelöste biochemische Stoffe ihre Funktion ausüben.

Emad Aziz und Kollegen berichteten darüber in der am 8. August 2010 erschienenen online-Ausgabe der Zeitschrift Nature Chemistry.

Die Gruppe hat die Röntgenabsorptionsspektren von Eisen-Ionen sowohl in Eisenchlorid als auch in organischen Verbindungen wie zum Beispiel dem aktiven Zentrum des Blutbestandteils Hämoglobin, dem Hämin, untersucht und einen bislang nicht erklärbaren negativ erscheinenden Peak - als Dip bezeichnet - in den Spektren analysiert.

Bei der Röntgenabsorptions-Spektroskopie wird die Probe mit monochromatischem Röntgenlicht bestrahlt. Wenn die Energie des eingestrahlten Lichts gerade mit einem energetischen Übergang im Molekül übereinstimmt, können Elektronen aus ihrem Grundniveau in ein energetisch höheres Niveau angeregt werden. Bei der Rückkehr in ihren Ausgangszustand wird die zugeführte Energie wieder abgegeben, zum Beispiel durch Aussenden von Fluoreszenzlicht. Indem Wissenschaftler dieses Fluoreszenzlicht aufzeichnen, gewinnen sie Aufschluss über die elektronische Orbitalstruktur von Atomen und Molekülen.

Emad Aziz und seine Kollegen haben durch Messungen mit Synchrotronlicht an der Strahlungsquelle BESSY II herausgefunden, dass einige gelöste Stoffe nach Anregung kein Fluoreszenzlicht aussenden. Der im Spektrum negativ erscheinende Peak erwies sich als Beleg dafür, dass die Rückkehr in das Grundniveau strahlungslos über einen sogenannten dunklen Kanal stattfindet, was auch als "dark channel" bezeichnet wird.

Dies passiert, weil durch Wechselwirkung miteinander die Moleküle der Probe und die des Lösungsmittels gemeinsame Orbitale bilden. Die angeregten Elektronen werden in dieses Orbital transferiert. "Dies funktioniert, weil sich die Molekülorbitale der Eisen- und der Wasserionen räumlich sehr nahe kommen und energetisch gut zusammenpassen", erläutert Emad Aziz, Leiter einer Nachwuchsgruppe am HZB. Die Elektronen verweilen in diesem neuen Niveau länger als in einem normalen Molekülorbital. Ihr Energiezustand verhindert daher die Aussendung des normalerweise zu erwartenden Fluoreszenzlichtes.

Die Dips im Spektrum geben damit Aufschluss über die Art der Wechselwirkung zwischen Probe und Lösungsmittel. In biochemischen Systemen wie zum Beispiel Proteinen kann man mithilfe dieses Prozesses nun untersuchen, in wie weit das Lösungsmittel zur Funktionalität beiträgt.

Solche ultraschnellen Vorgänge wie Ladungstransfers lassen sich mit den bisher üblichen Methoden nur mit sehr großem Aufwand beobachten. Nun haben die HZB-Forscher einen Weg gefunden, die Dynamik des Prozesses mithilfe einer einfachen Methode aufzuklären. "Wir können beobachten, wo die Ladungen hinwandern und wir können sehen, dass dies innerhalb von wenigen Femtosekunden passiert", betont Emad Aziz. Außerdem hat das Ergebnis große Bedeutung für die Interpretation von Röntgenabsorptionsspektren generell.

Für ihre Experimente hat die Gruppe die selbst entwickelte Fließzelle genutzt, mit der es auch möglich ist, biologische Proben in ihrer natürlichen Umgebung - das heißt, in gelöster Form - mit Röntgenstrahlung zu untersuchen.


Zusatzinformationen:

Emad F. Aziz, M. Hannelore Rittmann-Frank, Kathrin M. Lange, Sebastien Bonhommeau, Majed Chergui:
Charge transfer to solvent identified using dark channel fluorescence-yield L-edge spectroscopy.
In: Nature Chemistry; online veröffentlicht am 08. August 2010, DOI 10.1038/nchem.768

Quelle: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, HZB

 


Aktualisiert am 08.08.2010.



© 1996 - 2024 Internetchemie ChemLin










Akzeptieren

Diese Website verwendet Cookies. Durch die Nutzung dieser Webseite erklären Sie sich damit einverstanden, dass Cookies gesetzt werden. Mehr erfahren