Menü ausblenden
Menü ausblenden   Internetchemie   |     About   |   Kontakt   |   Impressum   |   Datenschutz   |   Sitemap
Menü ausblenden   Chemie Index   |   Chemie-Lexikon   |   Chemikalien   |   Elemente
Menü ausblenden   Geräte + Instrumente   |  
Menü ausblenden   Jobbörse, Stellenangebote   |  
Menü ausblenden   Crowdfunding Chemie   |     Text veröffentlichen
Home und Neuigkeiten
Chemie A - Z
Produkte, Geräte für Labor und Industrie
Chemikalien und chemische Verbindungen
Stellenbörse für Chemie-Jobs
Impressum, Kontakt
Crowdfunding Chemie

 

Bornsche Regel bestätigt

Quantenmechanik wankt (doch) nicht: Jahrzehnte alte Grundregel der Physik erstmals experimentell bestätigt.




Abbildung: Treffen Wellen - egal ob Schall oder Licht - aufeinander, treten Überlagerungen auf, sogenannte Interferenzen. In einem Dreispaltexperiment haben Forscher nun bewiesen, dass dabei keine Interferenzen höherer Ordnung auftreten. [Grafik: IQC]
Dreispaltexperiment

Treffen Wellen - egal ob Schall oder Licht - aufeinander, treten Überlagerungen auf, so genannte Interferenzen. Quantenphysiker aus Österreich und Kanada konnten nun erstmals direkt im Experiment die Existenz von Interferenzen höherer Ordnung ausschließen. Sie bestätigen damit eine wichtige Grundannahme der Quantenmechanik: die Bornsche Regel [vgl. Artikel in Science, siehe unten].

In der Quantenmechanik werden viele Aussagen in Wahrscheinlichkeiten getroffen. Der deutsche Physiker Max Born hatte 1926 postuliert, dass die Wahrscheinlichkeit ein Quantenobjekt zu einer bestimmten Zeit an einem Ort zu finden, gleich dem Quadrat seiner Wellenfunktion ist. Daraus ergeben sich jene Interferenzmuster, die im bekannten Doppelspaltexperiment beobachtet werden können. Borns Regel zählt zu den Grundpfeilern der Quantenmechanik. Aus ihr folgt, dass Interferenzen jeweils aus Paaren von Möglichkeiten resultieren. Interferenzen höherer Ordnung werden damit aber ausgeschlossen. Den direkten experimentellen Nachweis für diese Annahme blieb die Physikergemeinde aber erstaunlicherweise bis heute schuldig.

Nun haben Wissenschaftler um Prof. Gregor Weihs von der Universität Innsbruck und der University of Waterloo mit einem Dreispaltexperiment eben diesen Beweis erbracht. "Die Existenz von Interferenzen höherer Ordnung hätte dramatische Folgen für die Theorie, es würde die Quantenmechanik in ihren Grundfesten erschüttern", sagt Weihs. Anstoß für das Experiment gaben Überlegungen von Theoretikern, die mit Abweichungen von der Bornschen Regel Quantenmechanik und Relativitätstheorie miteinander versöhnen wollten, um so die alles erklärende Weltformel zu finden. "Unser Experiment macht diesen Bemühungen einmal mehr einen Strich durch die Rechnung", betont Gregor Weihs.

 

Dreispaltexperiment

Gregor Weihs arbeitet mit seinem Team an neuen Lichtquellen für die Übertragung von Quanteninformation. Der Professor für Photonik an der Universität Innsbruck hat dafür eine Ein-Photonen-Quelle entwickelt, die auch als Grundlage für den Test der Bornschen Regel diente. Die Photonen werden dabei durch eine kleine Stahlmembran mit drei mikrometergroßen Spalten geschickt. Für die Messungen werden die Spalte nacheinander in immer anderen Kombinationen geschlossen. Aus den resultierenden Daten kann dann berechnet werden, ob die Bornsche Regel zutrifft. "Das Experiment ist im Grunde sehr einfach", sagt Gregor Weihs, "und wir waren sehr erstaunt, dass das bisher noch niemand gemacht hat."

Probleme bereiteten den Physikern allerdings Messfehler, die sie aber in über zweijähriger Kleinarbeit beheben konnten. "Mit unseren Messungen können wir bis zu einer gewissen Grenze ausschließen, dass es Interferenzen höherer Ordnung gibt", freut sich Experimentalphysiker Weihs. Nun will er in Innsbruck mit einem verbesserten Experiment die Nachweisgrenze noch deutlich nach unten drücken.

 

Meister der Lichtteilchen

Durchgeführt wurde das aktuelle Experiment am Institute for Quantum Computing der University of Waterloo in Kanada. Dort hatte Prof. Gregor Weihs vor seiner Berufung an die Universität Innsbruck gewirkt. Seit 2008 baut er eine eigene Forschungsgruppe am Innsbrucker Institut für Experimentalphysik auf, die inzwischen aus zwölf Mitarbeitern besteht. Die international besetzte Gruppe beschäftigt sich mit der Konstruktion von Quellen für einzelne Photonen und verschränkte Photonenpaare auf der Basis von Halbleiternanostrukturen.

Das Fernziel der Forscherinnen und Forscher ist es, quantenoptische Experimente und Funktionen auf Halbleiterchips zu integrieren.


Zusatzinformationen:

Urbasi Sinha, Christophe Couteau, Thomas Jennewein, Raymond Laflamme, and Gregor Weihs:
Ruling Out Multi-Order Interference in Quantum Mechanics.
In: Science; Vol. 329. no. 5990, pp. 418 - 421. 23. Juli 2010, DOI 10.1126/science.1190545

Quelle: Universität Innsbruck, Österreich

 


Aktualisiert am 23.07.2010.



© 1996 - 2024 Internetchemie ChemLin






Akzeptieren

Diese Website verwendet Cookies. Durch die Nutzung dieser Webseite erklären Sie sich damit einverstanden, dass Cookies gesetzt werden. Mehr erfahren