Menü ausblenden
Menü ausblenden   Internetchemie   |     About   |   Kontakt   |   Impressum   |   Datenschutz   |   Sitemap
Menü ausblenden   Chemie Index   |   Chemie-Lexikon   |   Chemikalien   |   Elemente
Menü ausblenden   Geräte + Instrumente   |  
Menü ausblenden   Jobbörse, Stellenangebote   |  
Menü ausblenden   Crowdfunding Chemie   |     Text veröffentlichen
Home und Neuigkeiten
Chemie A - Z
Produkte, Geräte für Labor und Industrie
Chemikalien und chemische Verbindungen
Stellenbörse für Chemie-Jobs
Impressum, Kontakt
Crowdfunding Chemie

 

Wanted: Elektrisches Dipolmoment des Elektrons

Forscher suchen die vierte Eigenschaft des Elektrons: Elektrisches Dipolmoment würde Entstehung des Universums in der uns bekannten Form erklären.




Abbildung unten: Jülicher Forscher versuchen in Kooperation mit Kollegen aus den USA und Tschechien, ein elektrisches Dipolmoment bei Elektronen nachzuweisen. Seine Existenz ist eine Voraussetzung für die Richtigkeit zahlreicher physikalischer Theorien, die sich zum Beispiel mit der Entstehung des Universums beschäftigen. Um die Genauigkeit bisheriger Messungen zu verbessern, haben sie mit Hilfe des Jülicher Supercomputers JUROPA ein neues keramisches Material hergestellt. [Grafik: Forschungszentrum Jülich]
Forscher versuchen elektrisches Dipolmoment bei Elektronen nachzuweisen

Jülich - Besitzen Elektronen neben Masse, Ladung und Spin noch eine vierte Eigenschaft, wie es bei Physikern populäre Theorien, etwa die "Supersymmetrie", vorhersagen?

Forscher aus Deutschland, Tschechien und den USA wollen diese fundamentale Frage der Physik lösen. Um die Genauigkeit bisheriger Messungen zu verbessern, haben sie mit Hilfe des Jülicher Supercomputers JUROPA ein neues Material hergestellt.

Darüber berichten sie in der aktuellen Ausgabe der Fachzeitschrift "Nature materials" [siehe unten].

Elektronen sind negativ geladene Elementarteilchen; sie bilden die Hülle von Atomen und Ionen. So oder so ähnlich kann man es im Schulbuch nachlesen. Doch in Kürze könnte eine Ergänzung nötig werden. Denn viele Physiker glauben, dass Elektronen ein permanentes elektrisches Dipolmoment tragen. Ein elektrisches Dipolmoment entsteht normalerweise bei räumlicher Trennung von positiver und negativer Ladung. Analog zu Nord- und Südpol bei einem Magneten gibt es dann zwei elektrische Pole. Beim Elektron ist die Lage wesentlich komplizierter, weil Elektronen eigentlich keine räumliche Ausdehnung haben sollten. Dennoch setzen eine ganze Reihe physikalischer Theorien, die über das Standardmodell der Elementarteilchenphysik hinaus gehen, auf die Existenz des Dipolmoments. Diese Theorien wiederum würden erklären, warum das Universum überhaupt in der uns bekannten Form entstehen konnte. Denn nach gängiger Theorie hätte beim Urknall vor etwa 13,7 Milliarden Jahren genauso viel Materie wie Antimaterie entstehen müssen. Und da beide sich auslöschen, wäre nichts geblieben. Tatsächlich entstand aber offensichtlich mehr Materie als Antimaterie. Ein elektrisches Dipolmoment von Elektronen könnte das Ungleichgewicht erklären.

Doch noch ist es niemandem gelungen, das prophezeite winzige Dipolmoment nachzuweisen. Bisherige Methoden sind schlicht nicht empfindlich genug. Ein kleines Stückchen Keramik soll das bald ändern. Dr. Marjana Ležaic und Dr. Konstantin Rushchanskii vom Institut für Festkörperphysik am Forschungszentrum Jülich sowie Prof. Nicola Spaldin von der Universität von Kalifornien in Santa Barbara haben diese Keramik, die ganz spezielle Eigenschaften hat, mit dem Jülicher Supercomputer JUROPA in einem virtuellen Labor entworfen. Mit dem neuen Europium-Barium-Titanat sollen Messungen zehnmal empfindlicher werden als bisher. "Das könnte schon ausreichen, um das elektrische Dipolmoment der Elektronen zu finden", sagen die Jülicher Physiker.

Weil das elektrische Moment nicht direkt messbar ist, arbeiten die Physiker mit Wissenschaftlern der amerikanischen Universität Yale sowie tschechischen Forschungseinrichtungen in Prag an einem indirekten Nachweis: Die Forscher in Yale haben einen Versuchsaufbau entwickelt, um mit einem extrem empfindlichen SQUID-Magnetometer die Magnetisierung des Keramikstücks in einem elektrischen Feld zu messen. Ihr Ziel: eine Änderung der Magnetisierung nachzuweisen, wenn das elektrische Feld umgepolt wird. Das wäre zugleich der gesuchte Beweis, dass das elektrische Dipolmoment existiert. Denn ein elektrischer Dipol kann im Elektron stets nur parallel oder antiparallel zum Elektronen-Spin orientiert sein. In einem elektrischen Feld würden sich die meisten Elektronen so anordnen, dass ihr Dipolmoment parallel dazu ist, nur wenige andersherum. Dadurch entstünde eine messbare Magnetisierung. Wird das elektrische Feld umgepolt, kehren sich Dipolmoment und gleichzeitig Magnetisierung jedes einzelnen Elektrons um, die messbare Magnetisierung würde verändert. Ohne elektrisches Dipolmoment dagegen bliebe die Magnetisierung unverändert.

Teamkollegen aus Prag synthetisierten und charakterisierten das Material bereits im Labor und bestätigten die in Jülich berechneten Eigenschaften. Nur das gesuchte Dipolmoment des Elektrons bleibt bisher noch verborgen. "Noch behindern Störeffekte die Messungen", bedauert Ležaic. "Aber wir arbeiten mit Hochdruck daran, das Material weiter zu verbessern."


Zusatzinformationen:

K. Z. Rushchanskii, S. Kamba,V. Goian, P. Vanek, M. Savinov, J. Prokleška, D. Nuzhnyy, K. Knížek, F. Laufek, S. Eckel, S. K. Lamoreaux, A. O. Sushkov, M. Ležaic und N. A. Spaldin:
A multiferroic material to search for the permanent electric dipole moment of the electron.
In: Nature Materials; online veröffentlicht am 17. Juli 2010, DOI 10.1038/NMAT2799

Quelle: Forschungszentrum Jülich

 


Aktualisiert am 20.07.2010.



© 1996 - 2024 Internetchemie ChemLin










Akzeptieren

Diese Website verwendet Cookies. Durch die Nutzung dieser Webseite erklären Sie sich damit einverstanden, dass Cookies gesetzt werden. Mehr erfahren