Eine Forschungsgruppe um Georg Kresse, Professor für Computational Quantum Mechanics an der Universität Wien, hat eine neuartige Methode zur Beschreibung der Wechselwirkung zwischen Elektronen entwickelt. Damit können chemische Prozesse an Oberflächen mit unübertroffener Genauigkeit berechnet, sowie Struktur und Bindungsstärke von Materialien wesentlich genauer vorhergesagt werden.
Die ForscherInnen publizierten dazu in der aktuellen Ausgabe des renommierten Fachjournals "Nature Materials".
Verbesserte Beschreibung der Korrelationsenergie
Der verstärkte Einsatz von Computersimulationen zählt zu den bedeutendsten Entwicklungen der letzten Jahrzehnte in den Materialwissenschaften. Für eine atomistische quantenmechanische Beschreibung kommen dabei vor allem Methoden der Dichtefunktionaltheorie (DFT) zum Einsatz, wie das in der Gruppe an der Universität Wien entwickelte Vienna Ab-initio Simulation Package (VASP).
Die Komplexität des quantenmechanischen Vielelektronenproblems erfordert allerdings eine genäherte Beschreibung der Wechselwirkung zwischen den Elektronen. Die bisher üblichen Näherungen erlauben zwar häufig eine gute Vorhersage von Trends, absolute Bindungsenergien sind aber mit Fehlern bis zu 20 Prozent behaftet. Weiters werden viele Effekte, wie z.B. Van-der-Waals-Wechselwirkungen damit nur unzureichend wiedergegeben. Diese Van-der-Waals-Wechselwirkungen sind aber essentiell, um die Bindung zwischen Molekülen und zwischen Molekülen und Oberflächen zu beschreiben. Die ForscherInnen der Universität Wien fanden nun einen Weg, die Wechselwirkung zwischen den Elektronen im Rahmen einer näherungsweisen Vielelektronentheorie genau zu berechnen. Laurids Schimka von der Forschungsgruppe um Georg Kresse meint dazu: "Durch den nicht-lokalen Ansatz zur Beschreibung der Wechselwirkung zwischen den Elektronen können wir jetzt Systeme simulieren, bei denen lokale DFT-Ansätze versagen."
Computergestützte Oberflächenphysik
Ein zentrales Thema der Oberflächenphysik ist die Beschreibung von Vorgängen an der Grenzfläche zwischen einem Material und seiner gasförmigen Umgebung. Die Oberflächenphysik bildet damit die Grundlage für das Verständnis von katalytischen Prozessen, wie der Oxidation von giftigem Kohlenmonoxid (CO) zu ungiftigem Kohlendioxid in Fahrzeugkatalysatoren. Bei der Beschreibung der Adsorption von Kohlenmonoxid auf Metallen zeigen alle bisherigen Ansätze in der Dichtefunktionaltheorie fundamentale Schwächen: Entweder wird die Stabilität der Oberfläche oder die Wechselwirkung mit den adsorbierenden Molekülen überschätzt.
Erst mit dem neuen Ansatz können beide Eigenschaften korrekt beschrieben werden. Zusätzlich werden auch wichtige Beiträge wie die Van-der-Waals-Wechselwirkung zwischen organischen Molekülen und metallischen Oberflächen berücksichtigt. Mit dieser neuen Methode werden daher chemische Prozesse an Oberflächen wesentlich genauer modelliert. Damit können Computersimulationen verstärkt zum Design von neuartigen Materialen für die Katalyse oder den Korrosionsschutz eingesetzt werden.
Zusatzinformationen:
L. Schimka, J. Harl, A. Stroppa, A. Grüneis, M. Marsman, F. Mittendorfer, G. Kresse:
Accurate surface and adsorption energies from many-body perturbation theory.
In: Nature Materials; online veröffentlicht am 25. Juli 2010, DOI 10.1038/nmat2806
Quelle: Universität Wien, Österreich
Aktualisiert am 28.07.2010.
Permalink: https://www.internetchemie.info/news/2010/jul10/elektronen-wechselwirkung.php
© 1996 - 2024 Internetchemie ChemLin