Menü ausblenden
Menü ausblenden   Internetchemie   |     About   |   Kontakt   |   Impressum   |   Datenschutz   |   Sitemap
Menü ausblenden   Chemie Index   |   Chemie-Lexikon   |   Chemikalien   |   Elemente
Menü ausblenden   Geräte + Instrumente   |  
Menü ausblenden   Jobbörse, Stellenangebote   |  
Menü ausblenden   Crowdfunding Chemie   |     Text veröffentlichen
Home und Neuigkeiten
Chemie A - Z
Produkte, Geräte für Labor und Industrie
Chemikalien und chemische Verbindungen
Stellenbörse für Chemie-Jobs
Impressum, Kontakt
Crowdfunding Chemie

 

Bänder aus Graphen

Forscher berichteten in Nature, wie es ihnen erstmals gelungen ist, mit einer einfachen chemischen Methode wenige Nanometer breite Bänder aus Graphen auf Oberflächen wachsen zu lassen.




Abbildung: Strukturmodell und dreidimensionale Darstellung der Rastertunnelmikroskop-Aufnahme eines zickzack-förmigen Graphen-Nanobandes. [Bildquelle: EMPA]
Graphen-Nanoband

Transistoren auf Basis von Graphen gelten als mögliche Nachfolger für die heute gebräuchlichen Bauteile aus Silicium. Bestehend aus zweidimensionalen Kohlenstoffschichten besitzt Graphen etliche herausragende Eigenschaften: Es ist nicht nur härter als Diamant, extrem reissfest und undurchlässig für Gase, sondern auch ein ausgezeichneter elektrischer und thermischer Leiter. Weil Graphen allerdings ein Halbmetall ist, besitzt es - im Gegensatz zu Silizium - keine elektronische Bandlücke und somit keine Schalteigenschaften - DIE Hauptvoraussetzung für Elektronik-Anwendungen.

Forscher der Empa und des Max-Planck-Instituts für Polymerforschung in Mainz sowie der ETH Zürich und der Universitäten Zürich und Bern entwickelten deshalb ein neues Verfahren, um Graphenbänder mit Bandlücken herzuzustellen.

 

Graphenbänder im Nanometermassstab

Bis anhin wurden Bänder aus grösseren Graphenschichten "geschnitten", etwa so wie Tagliatelle aus einem Pastateig. Oder Kohlenstoffnanoröhrchen wurden der Länge nach aufgetrennt. In den Bändern entsteht dadurch über einen quantenmechanischen Effekt eine Bandlücke - ein Energiebereich, in dem sich keine Elektronen befinden können und der die physikalischen Eigenschaften wie etwa die Schaltfähigkeit bestimmt. Breite (und Randform) des Graphenbandes bestimmen die Grösse der Bandlücke und beeinflussen dadurch die Eigenschaften eines daraus konstruierten Bauteils.

Falls sich Graphenbänder nun extrem schmal - deutlich unter zehn Nanometer - und noch dazu mit wohl definierten Rändern herstellen liessen, so die Idee, dann könnten daraus Bauteile mit massgeschneiderten optischen und elektronischen Eigenschaften resultieren: Je nach Bedarf kann über die Manipulation der Bandlücke die Schalteigenschaft eines Transistors eingestellt werden. Alles andere als trivial, denn die bis jetzt dafür verwendeten lithografische Methoden, etwa zum Schneiden, stossen hier an fundamentale Grenzen; sie liefern zu breite Bänder mit diffusen Rändern.

 

Graphenbänder wachsen lassen

In der Nature-Ausgabe vom 22. Juli 2010 (vgl. Hinweis unten] beschreiben die Forscher um Roman Fasel, Senior Scientist an der Empa und Professor für Chemie und Biochemie an der Universität Bern, und Klaus Müllen, Direktor am Max-Planck-Institut für Polymerforschung, eine einfache oberflächenchemische Methode, mit der sich derart schmale Bänder ganz ohne zu schneiden herstellen lassen - also bottom-up, aus den Grundbausteinen. Dazu brachten sie unter Ultrahochvakuumbedingungen auf Gold- oder Silberoberflächen spezielle, an strategisch wichtigen Positionen halogensubstituierte Monomere auf, die sich in einem ersten Reaktionsschritt zu Polyphenylenketten verbanden.

In einem zweiten, durch stärkeres Erhitzen eingeleiteten Reaktionsschritt, in dem Wasserstoffatome entzogen wurden, koppelten die Ketten zu einem planaren, aromatischen Graphensystem. So entstanden atomar dünne Graphenbänder von einem Nanometer Breite und einer Länge bis zu 50 Nanometer. Damit sind die Graphenbänder so schmal, dass sie eine elektronische Bandlücke aufweisen und nun wie Silizium Schalteigenschaften besitzen - ein erster, wichtiger Schritt für den Wechsel von der Silizium-Mikro- zur Graphen-Nano-Elektronik. Doch damit nicht genug: Je nachdem, welche Monomere die Forscher verwendeten, bildeten sich Graphenbänder mit unterschiedlicher räumlicher Struktur - entweder gradlinige oder zickzackförmige.

 

Untersuchungen zu weiteren Eigenschaften

Da die Forscher nun Graphenbänder (fast) nach Belieben herstellen können, möchten sie als nächstes untersuchen, wie sich etwa die magnetischen Eigenschaften der Graphenbänder in Abhängigkeit von den verschiedenartigen Rändern beeinflussen lassen. Die oberflächenchemische Methode eröffnet aber auch interessante Perspektiven hinsichtlich der gezielten Dotierung von Graphenbändern: Die Verwendung von Monomerbausteinen mit Stickstoff- oder Boratomen an genau definierten Positionen oder von Monomeren mit zusätzlichen funktionellen Gruppen müsste die Herstellung positiv und negativ dotierter Graphenbänder ermöglichen. Auch eine Kombination verschiedenartiger Monomere ist möglich und könnte beispielsweise die Herstellung so genannter Heteroübergänge erlauben - Schnittstellen zwischen verschiedenartigen Graphenbändern, etwa mit kleiner und grosser Bandlücke -, die in Solarzellen oder Höchstfrequenzbauelementen zum Einsatz kommen könnten. Dass das zugrunde liegende Bauprinzip auch hierfür funktioniert, haben die Forscher bereits bewiesen: Mit zwei passenden Monomere haben sie mit einem Knotenpunkt drei Graphenbänder miteinander verknüpft.

Bis anhin konzentrierten sich die Forscher auf Graphenbänder auf Metalloberflächen. Damit die Graphenbänder allerdings für die Elektronik genutzt werden können, müssen diese auf Halbleiteroberflächen hergestellt oder Methoden entwickelt werden, um die Bänder von Metall- auf Halbleiteroberflächen zu übertragen. Und auch hierfür stimmen erste Ergebnisse die Forscher bereits zuversichtlich.

 

Siehe auch:

- Ein Schnittmuster für Graphen-Nanobänder (2016).


Zusatzinformationen:

Jinming Cai, Pascal Ruffieux, Rached Jaafar, Marco Bieri, Thomas Braun, Stephan Blankenburg, Matthias Muoth, Ari P. Seitsonen, Moussa Saleh, Xinliang Feng, Klaus Müllen, Roman Fasel:
Atomically precise bottom-up fabrication of graphene nanoribbons.
In: Nature; 466, 470 - 473, 22. Juli 2010, DOI 10.1038/nature09211

Quelle: Eidgenössische Materialprüfungs- und Forschungsanstalt, EMPA, Schweiz

 


Aktualisiert am 23.07.2010.



© 1996 - 2024 Internetchemie ChemLin






Akzeptieren

Diese Website verwendet Cookies. Durch die Nutzung dieser Webseite erklären Sie sich damit einverstanden, dass Cookies gesetzt werden. Mehr erfahren