Menü ausblenden
Menü ausblenden   Internetchemie   |     About   |   Kontakt   |   Impressum   |   Datenschutz   |   Sitemap
Menü ausblenden   Chemie Index   |   Chemie-Lexikon   |   Chemikalien   |   Elemente
Menü ausblenden   Geräte + Instrumente   |  
Menü ausblenden   Jobbörse, Stellenangebote   |  
Menü ausblenden   Crowdfunding Chemie   |     Text veröffentlichen
Home und Neuigkeiten
Chemie A - Z
Produkte, Geräte für Labor und Industrie
Chemikalien und chemische Verbindungen
Stellenbörse für Chemie-Jobs
Impressum, Kontakt
Crowdfunding Chemie

 

Heusler-Verbindungen

Goldmine für Zukunftstechnologien: Neuer Quantenzustand der Materie in Heusler-Verbindungen entdeckt.




Forscher aus Mainz und Stanford zeigen Wege für Spin-Elektronik, Quantencomputing und für völlig neue physikalische Effekte.

Schon seit vielen Jahren sind Wissenschaftler der Johannes Gutenberg-Universität Mainz weltführend in der Forschung über Heusler-Verbindungen als wichtige Materialklasse für die Spin-Elektronik. In den letzten Jahren sind neue Anwendungsgebiete im Bereich der erneuerbaren Energien wie Solarenergie und Thermoelektrik hinzugekommen. Nun geraten die Heusler-Verbindungen auch in den Blickpunkt für Zukunftstechnologien wie den Quantencomputer.

"Wir haben aufgrund von Berechnungen einen neuen Quantenzustand der Materie in Heusler-Verbindungen entdeckt, was absolut ungeahnte Möglichkeiten für ihre Verwendung eröffnet", teilte Univ.-Prof. Dr. Claudia Felser mit. "Heusler-Materialien sind wahre Alleskönner und eine Goldmine für Zukunftstechnologien." Zusammen mit Prof. Shou Cheng Zhang von der Stanford University zeigt die Mainzer Wissenschaftlerin, dass sich zahlreiche Heusler-Verbindungen wie topologische Isolatoren (TI) verhalten können. TI wurden erst vor fünf Jahren entdeckt.

Schlüsselentdeckungen in der Physik oder den Materialwissenschaften werden häufig eher zufällig bei Messungen im Labor gemacht. Im Fall der sogenannten topologischen Isolatoren war das anders. 2006 sagte Prof. Zhang aus Stanford einen neuen Quantenzustand der Materie in Nanostrukturen des bekannten Halbleiters Quecksilber-Tellurid (HgTe) voraus. Ein Jahr später wurde der Effekt von dem Würzburger Team um Laurens Molenkamp experimentell bestätigt. Um physikalisch zu verstehen, was dabei vor sich geht, werden völlig neue mathematische Konzepte benötigt.

Seit fast 5 Jahren sind die TI das Hot Topic in der Festkörper- und Materialphysik. Kennzeichnend für die topologischen Isolatoren ist, dass die Materialien eigentlich Isolatoren oder Halbleiter sind, an der Oberfläche oder an Grenzflächen sind sie allerdings metallisch, aber eben nicht wie normale Metalle. Ähnlich wie bei Supraleitern zeigen die Elektronen an der Oberfläche oder den Grenzflächen keine Wechselwirkung mit ihrer Umgebung, sie befinden sich in einem neuen Quantenzustand. Anders als in Supraleitern zeigen topologische Isolatoren zwei nichtwechselwirkende Ströme, jeweils einen für jede Spinrichtung. Der Spin ist der Eigendrehimpuls der Elektronen. Diese beiden Spinströme, die weder Defekte noch Verunreinigungen im Material wahrnehmen, können für die Zukunftselektronik "Spintronik" und zur Informationsverarbeitung in Quantencomputern genutzt werden.

Diese Fähigkeiten werden nun auch für Heusler-Materialien vorausgesagt. Heusler-Verbindungen sind Verbindungen aus drei Elementen, die häufig halbleitend oder magnetisch sind. Schon um 1900 wurde diese Verbindungsklasse von Fritz Heusler entdeckt. Das Besondere an den Verbindungen ist, dass sie ganz andere Eigenschaften zeigen, als man aus der Kombination der Elemente, aus denen sie hergestellt werden, vermuten könnte. So wurde die erste Heusler-Verbindung aus den nichtmagnetischen Elementen Kupfer, Mangan und Aluminium hergestellt; Cu2MnAl ist aber ein Ferromagnet, sogar bei Raumtemperatur. Verbindungen aus drei guten Metallen sind plötzlich Halbleiter und für erneuerbare Energien wie Solarzellen oder für die Umwandlung von Wärme in Strom, die Thermoelektrik, interessant. Mainz ist international und auch bei potentiellen Anwendern als Standort für das Design oder die Herstellung von Heusler-Materialien bekannt. Grundlegende Erkenntnisse über Heusler-Verbindungen und ihre Eigenschaften und damit über eine etwaige Nutzung für viele künftige Anwendungen wurden in Mainz gewonnen.

Dass Heusler-Materialien nun auch als topologische Isolatoren in Frage kommen, hat weltweit für Aufregung gesorgt. "Dafür gibt es zwei Gründe", erklärt Felser. "Zum einen gibt es in dieser großen Materialklasse mit mehr als 1000 bekannten Vertretern alleine mehr als 50 Verbindungen, die den Fingerabdruck der TI zeigen. Zum anderen können ganz neue physikalische Effekte designt werden, da die Materialien aus drei Elementen bestehen und daher neben dem topologischen Quantenzustand weitere interessante Eigenschaften aufweisen können." So sind Kombinationen von zwei Quantenzuständen wie Supraleitung und topologischen Oberflächenzuständen möglich. Es sind zudem noch nicht entdeckte, aber teilweise schon vorhergesagte Eigenschaften denkbar. "Es ist völlig neu, dass all diese Möglichkeiten in nur einem Material zusammenkommen", so Felser.

Die renommierte Fachzeitschrift Nature Materials hat vor diesem Hintergrund gleich drei Artikel zu dem Thema veröffentlicht: den Artikel des Entdeckerteams aus Stanford und Mainz, eine kurze Zeit später eingereichte Arbeit aus Princeton und einen Kommentar über die sensationelle Entdeckung.

 

Aufbruch in neue Welten: Zukunftselektronik und Quantencomputer

Gutenberg Research Award 2010 an Professor Shoucheng Zhang von der Stanford University verliehen.

Die Graduiertenschule "Materials Science in Mainz" (MAINZ) der Johannes Gutenberg-Universität Mainz zeichnet Professor Shoucheng Zhang von der kalifornischen Stanford University mit dem mit 20.000 Euro dotierten Gutenberg Research Award 2010 aus. Zhang erhält den Preis für seine herausragende Forschung zu topologischen Isolatoren, die erst vor knapp fünf Jahren entdeckt wurden. Aufgrund ihrer Eigenschaften können sie für die Zukunftselektronik "Spintronik" und zur Informationsverarbeitung in Quantencomputern genutzt werden. Im Gegensatz zu digitalen Computern beruht die Funktion eines Quantencomputers auf den besonderen Gesetzen der Quantenmechanik.

Aktuelle Studien legen nahe, dass bestimmte Probleme der Datenverarbeitung, wie beispielsweise die Suche in extrem großen Datenbanken oder die Produktzerlegung extrem langer Zahlen - ein Problem, das für die Sicherheit der E-Mail-Übermittlung von erheblicher Relevanz ist - mit Quantencomputern wesentlich effizienter gelöst werden können als mit klassischen Computern. "Mit Professor Shoucheng Zhang hat die Graduiertenschule Materials Science in Mainz einen herausragenden Wissenschaftler mit dem Gutenberg Research Award 2010 ausgezeichnet. Seine Forschungsschwerpunkte sind zugleich wissenschaftliche Schwerpunktgebiete unserer Nachwuchswissenschaftlerinnen und -wissenschaftler. Auf diese Weise ergibt sich eine ertragreiche Kooperation mit der Graduiertenschule MAINZ", betont Univ.-Prof. Dr. Mechthild Dreyer, Vizepräsidentin für Studium und Lehre der Universität Mainz.

Die Zusammenarbeit zwischen Wissenschaftlerinnen und Wissenschaftlern aus Mainz und Stanford ist bereits etabliert: So ist erst kurz zuvor in der renommierten Zeitschrift Nature Materials die gemeinsame Veröffentlichung "Tunable multifunctional topological insulators in ternary Heusler compounds" [Multifunktionale topologische Isolatoren in der Klasse der ternären Heusler-Verbindungen] erschienen. Bereits Mitte letzten Jahres stellten Claudia Felser und Shoucheng Zhang fest, dass durch die Zusammenführung der Mainzer Expertise über Heusler-Verbindungen mit der Idee der topologischen Isolatoren Materialien mit neuen physikalischen Effekten erzeugt werden können.

Darüber hinaus veranstaltete die Graduiertenschule MAINZ zusammen mit der Stanford University und IBM im August 2010 die Sommerschule "SpinAge 2010" in Watsonville, Kalifornien, die von Claudia Felser, Shoucheng Zhang und Stuart Parkin, Preisträger des Gutenberg Research Award 2008, organisiert wird. "Nicht nur auf der Ebene der Wissenschaftler soll ein Austausch gelebt werden, wir möchten auch, dass Doktoranden aus MAINZ, Stanford und von IBM zusammenkommen und gemeinsam über explorative neue Forschungsfelder diskutieren", beschreibt Professor Zhang das Anliegen der internationalen Summer School 2010. "Genau diesen Effekt soll der Gutenberg Research Award haben - er soll Initialzünder sein für Kollaborationen zwischen Preisträgern und Wissenschaftlern der Graduiertenschule MAINZ", ergänzt Professorin Dr. Claudia Felser, Direktorin der Graduiertenschule "Materials Science in Mainz". "Bemerkenswert an der Forschung von Prof. Shoucheng Zhang ist die Überführung von Ideen aus der Elementarteilchenphysik in die Festkörperphysik", betont Prof. Dr. Laurens Molenkamp von der Universität Würzburg in seiner Laudatio für den Preisträger. "Besonders schnell konnten die theoretischen Vorhersagen von Prof. Zhang experimentell bestätigt werden."

Professor Shoucheng Zhang studierte Physik an der Humboldt-Universität zu Berlin und promovierte im Jahr 1987 an der State University of New York. Danach war er zunächst forschend an der University of California Santa Barbara und dem IBM Almaden Research Center in San Jose tätig, bevor er im Jahr 1993 eine Professur an der Stanford University antrat. Er ist international anerkannt als einer der führenden Forscher auf dem Gebiet der Physik der kondensierten Materie und hat entscheidende Beiträge zum Quantum-Hall-Effekt, zu Hochtemperatursupraleitern und Quantenmagnetismus geleistet. In den letzten Jahren hat seine theoretische Arbeit das neue Feld der topologischen Isolatoren und Supraleiter eröffnet. Seine theoretische Vorhersage der Eigenschaften topologischer Isolatoren wurde vor Kurzem von Forschern der Arbeitsgruppe um Professor Dr. Laurens Molenkamp an der Universität Würzburg experimentell bestätigt. Für diese zukunftsträchtige Entdeckung wurden Zhang und Molenkamp am 1. September 2010 mit dem angesehenen Europhysics Prize der European Physical Society ausgezeichnet.

Die Graduiertenschule MAINZ vergibt den Gutenberg Research Award und den Gutenberg Lecture Award jährlich an herausragende Wissenschaftlerinnen und Wissenschaftler auf dem Gebiet der Materialwissenschaften. Die Preisträger werden von Wissenschaftlern, die an MAINZ beteiligt sind, nominiert und durch das Leitungsgremium der Graduiertenschule ausgewählt. MAINZ wurde in der Exzellenzinitiative im Jahr 2007 bewilligt und besteht aus Arbeitsgruppen der Johannes Gutenberg-Universität Mainz, der Technischen Universität Kaiserslautern und des Max-Planck-Instituts für Polymerforschung. Exzellente Doktorandinnen und Doktoranden der Naturwissenschaften aus dem In- und Ausland erhalten durch die Graduiertenschule eine herausragende Ausbildung auf dem Gebiet der Materialwissenschaften.


Zusatzinformationen:

Stanislav Chadov, Xiaoliang Qi, Jürgen Kübler, Gerhard H. Fecher, Claudia Felser, Shou Cheng Zhang:
Tunable multifunctional topological insulators in ternary Heusler compounds.
In: Nature Materials; 9, 541 - 545, 30. Mai 2010, DOI 10.1038/nmat2770

Marcel Franz:
Topological insulators: Starting a new family.
In: Nature Materials; 9, 536 - 537, 30. Mai 2010, DOI 10.1038/nmat2783

Quelle: Johannes Gutenberg-Universität, Mainz

 


Aktualisiert am 21.07.2010.



© 1996 - 2024 Internetchemie ChemLin














Akzeptieren

Diese Website verwendet Cookies. Durch die Nutzung dieser Webseite erklären Sie sich damit einverstanden, dass Cookies gesetzt werden. Mehr erfahren