Menü ausblenden
Menü ausblenden   Internetchemie   |     About   |   Kontakt   |   Impressum   |   Datenschutz   |   Sitemap
Menü ausblenden   Chemie Index   |   Chemie-Lexikon   |   Chemikalien   |   Elemente
Menü ausblenden   Geräte + Instrumente   |  
Menü ausblenden   Jobbörse, Stellenangebote   |  
Menü ausblenden   Crowdfunding Chemie   |     Text veröffentlichen
Home und Neuigkeiten
Chemie A - Z
Produkte, Geräte für Labor und Industrie
Chemikalien und chemische Verbindungen
Stellenbörse für Chemie-Jobs
Impressum, Kontakt
Crowdfunding Chemie

 

Nanoantennen: Wenn Licht auf winzige Metallstrukturen trifft.

Eine Antenne auf der Nanometerskala, die neue Möglichkeiten für Anwendungen in der Optik sowie für den Nachweis von Molekülen in Biologie und Chemie verspricht, haben Forscher des KIT und der Rice University in Houston/Texas entwickelt.




Abbildung unten: Tausendfach verstärktes elektromagnetisches Feld in der Lücke zwischen zwei Goldnanostrukturen. Die schematische Darstellung zeigt Goldatome und ihre chemischen Bindungen (gelb), die Elektronendichte (blau) und das erhöhte elektromagnetische Feld (rot). [Abbildung: Daniel R. Ward]
Nanoantenne

Dabei ist es ihnen erstmals gelungen, die erhöhte Feldstärke an der optischen Antenne direkt zu messen.

Die Ergebnisse ihrer Forschungen haben die Wissenschaftler in der renommierten Zeitschrift "Nature Nanotechnology" veröffentlicht [siehe unten].

Wenn Licht auf eine metallische Nanostruktur trifft, kann es darin Wellen in der Dichte der Elektronen anregen. Durch diese Dichtewellen wirkt die Nanostruktur dann wie eine Antenne für Licht - ähnlich wie herkömmliche Antennen in Radios oder Mobiltelefonen für langwelligere Strahlung. Bei den im Alltag eingesetzten Antennen sind die Dichteänderungen und die damit verbundenen elektrischen Felder meist klein.

Nicht so bei der Nanoantenne, die Forscher aus Karlsruhe und Houston nun entwickelt haben: Zwei Metallspitzen sind auf der Nanometerskala voneinander getrennt, das heißt, sie liegen weniger als ein Hunderttausendstel der Dicke eines menschlichen Haares auseinander.

"So wird die Energie in der Lichtwelle auf ein winziges Volumen fokussiert, was enorme elektrische Felder hervorruft und ganz neue Anwendungen ermöglicht", berichtet der Physiker Professor Gerd Schön vom Center for Functional Nanostructures (CFN) des KIT. Allerdings war es bisher schwierig, die erhöhte Feldstärke im Experiment direkt nachzuweisen.

Einer internationalen Forschergruppe ist dies nun gelungen: Der Physiker Dr. Fabian Pauly, Leiter einer Nachwuchsgruppe am Institut für Theoretische Festkörperphysik des KIT, und sein Mitarbeiter Falco Hüser sowie der ehemalige KIT-Forscher Juan Carlos Cuevas, heute Professor an der Autonomen Universität Madrid, haben mit theoretischen Untersuchungen die praktischen Experimente von Professor Douglas Natelson und Daniel R. Ward von der Rice University in Houston begleitet. In einer Probe, in der zwei metallische Spitzen durch einen weniger als einen Nanometer großen Spalt voneinander getrennt sind, maßen die Forscher die Feldstärke und fanden dabei Erhöhungen von mehr als einem Faktor tausend. Dies erreichten sie durch eine geschickte Kombination von optischer Gleichrichtung und hochempfindlichen Leitwertmessungen.

Messungen und Ergebnisse zeigen die Möglichkeiten und Grenzen von metallischen Nanoantennen für Licht - sogenannten plasmonische Antennen - für die spektroskopischen Untersuchungen von Oberflächen, für chemische, biologische und medizinische Sensoren, aber auch für die Grundlagenforschung zur Wechselwirkung von Licht und Materie auf der Nanometerskala. Mit ähnlichen Themen der Nanooptik sind derzeit verschiedene Forschergruppen des KIT in weiterführenden theoretischen und experimentellen Studien befasst.


Zusatzinformationen:

Daniel R. Ward, Falco Hüser, Fabian Pauly, Juan Carlos Cuevas, Douglas Natelson:
Optical rectification and field enhancement in a plasmonic nanogap.
In: Nature Nanotechnology; online veröffentlicht am 19. September 2010, DOI 10.1038/nnano.2010.176

Quelle: Karlsruher Institut für Technologie, KIT

 


Aktualisiert am 28.09.2010.



© 1996 - 2024 Internetchemie ChemLin










Akzeptieren

Diese Website verwendet Cookies. Durch die Nutzung dieser Webseite erklären Sie sich damit einverstanden, dass Cookies gesetzt werden. Mehr erfahren