Um zelluläre Prozesse besser zu verstehen, ist es hilfreich zu beobachten, welche physiologischen Antworten beispielsweise Signalstoffe, Pharmaka oder Toxine ausgelösen. Das gelingt mit hoher räumlicher und zeitlicher Auflösung, wenn der Wirkstoff mit einer Art "Maske" inaktiviert und erst vor Ort kontrolliert davon befreit wird - durch Bestrahlung mit Licht.
Ein Team um Peter I. Dalko von der Universität Paris (Frankreich) hat eine Methode entwickelt, mit der nun auch Röntgenstrahlen zur "Demaskierung" eingesetzt werden können.
Wie die Forscher in der Zeitschrift Angewandte Chemie berichten, muss die Maske dazu mit einer "Antenne" zum Empfang der Röntgenstrahlung ausgestattet sein.
Konventionelle Masken fallen bei Bestrahlung mit UV-, sichtbarem oder IR-Licht. Dieses dringt aber maximal etwa 100 µm tief in Gewebe ein. Trotz faseroptischer Sonden und anderer verbesserter Systeme zur Lichtübertragung ist es immer noch eine Herausforderung, das Licht tiefer in ein Gewebe zu bringen. Harte Röntgenstrahlen sind dagegen in der Lage, mehrere Zentimeter tief in weiches Gewebe einzudringen. Aber sie können die Masken nicht entfernen. Denn um die Maske vom Wirkstoff zu entfernen, müssen chemische Bindungen gespalten werden. Das funktioniert nicht, weil organische Moleküle Röntgenstrahlung viel zu schlecht absorbieren.
Die französischen Wissenschaftler haben nun einen Trick verwendet, um diese Hürde zu nehmen: Sie verwenden Schwermetalle als molekulare "Antennen", um die Röntgenstrahlung einzufangen und auf die maskierten Wirkstoffmoleküle zu übertragen.
Die Forscher deaktivieren ihre Wirkmoleküle, indem sie eine Aminochinolin-Verbindung daran knüpfen, eine gängige Maske, die normalerweise durch UV-Licht abgespalten wird. An die Maske knüpfen sie einen Komplex des Seltene-Erden-Metalls Gadolinium als Antenne. Ursprünglich war dieser Gadolinium-Komplex als Kontrastmittel für die Kernspintomographie entwickelt worden.
Bei Bestrahlung mit Röntgen- oder Gamma-Strahlen fängt das Gadolinium die Lichtenergie auf. Dabei wird eines seiner Elektronen "herausgeschossen" und auf die Maske übertragen. Als Folge wird die chemische Bindung zwischen Maske und Wirkstoffmolekül gespalten und der Wirkstoff freigesetzt.
Außer zur Erforschung physiologischer Vorgänge könnte die Methode, Wirkstoffe per Röntgenstrahlung von ihren Antennen-bestückten Masken freizusetzen, auch ein neuer Ausgangspunkt für die Phototherapie von Tumoren sein. So könnte das Chemotherapeutikum in einer maskierten und damit ungiftigen Form dem Körper zugeführt und in den Tumor transportiert werden. Da die Antenne gleichzeitig als Sonde für die Kernspintomographie dient, kann der Tumor sichtbar gemacht werden. Indem der Tumor einer Röntgenbestrahlung ausgesetzt wird, lässt sich der Wirkstoff lokal freisetzen, sodass weniger Nebenwirkungen auftreten und gesundes Gewebe geschont wird.
Zusatzinformationen:
Morgane Petit, Guillaume Bort, Dr. Bich-Thuy Doan, Dr. Cécile Sicard, Dr. David Ogden, Prof. Daniel Scherman, Prof. Clotilde Ferroud, Dr. Peter I. Dalko:
X-ray Photolysis to Release Ligands from Caged Reagents by an Intramolecular Antenna Sensitive to Magnetic Resonance Imaging.
In: Angewandte Chemie; online veröffentlicht am 21. Juli 2011, DOI 10.1002/ange.201102948
Quelle: Angewandte Chemie, Presseinformation Nr. 29/2011
Aktualisiert am 03.08.2011.
Permalink: https://www.internetchemie.info/news/2011/aug11/roentgenstrahlen-demaskierung.php
© 1996 - 2024 Internetchemie ChemLin