Menü ausblenden
Menü ausblenden   Internetchemie   |     About   |   Kontakt   |   Impressum   |   Datenschutz   |   Sitemap
Menü ausblenden   Chemie Index   |   Chemie-Lexikon   |   Chemikalien   |   Elemente
Menü ausblenden   Geräte + Instrumente   |  
Menü ausblenden   Jobbörse, Stellenangebote   |  
Menü ausblenden   Crowdfunding Chemie   |     Text veröffentlichen
Home und Neuigkeiten
Chemie A - Z
Produkte, Geräte für Labor und Industrie
Chemikalien und chemische Verbindungen
Stellenbörse für Chemie-Jobs
Impressum, Kontakt
Crowdfunding Chemie

 

Durchsichtige Metalle

Photonen-Plasmonen-Kopplung: Durch zu enge Löcher gezwängt- Farbstoff lotst Licht durch perforierte Metallfolien.




Abbildung: Optisch dicke Metallfilme, die mit subwellenlängengroßen Löchern perforiert sind, werden transparent, wenn sie eine dünne Schicht von Molekülen auf ihrer Oberfläche adsorbieren. Transmissionsspektren von Filmen mit (schwarze Kurve) und ohne Löcher (rote Kurve) belegen, dass die Transmission unerwartet bei Wellenlängen stattfindet, bei denen die Molekülschicht stark absorbiert. [Bildquelle: Angewandte Chemie]
Transparente Metalle

So wie Photonen Bündel von Lichtenergie sind, so versteht man unter Plasmonen Energie-Einheiten von Plasmaschwingungen, also Oszillationen der Elektronendichte in einem Festkörper. Oberflächen-Plasmonen, Plasmonen an der Oberfläche von Metallen, eröffnen neue Perspektiven für die Manipulationn und Leitung von Licht in vielen Bereichen, von moderner optischer Datenverarbeitung bis zu biomedizinischen Sensoren.

In der Zeitschrift Angewandte Chemie beschreiben Thomas W. Ebbesen, James A. Hutchison und ein Team der Universität Straßburg (Frankreich) nun einen interessanten neuen Effekt, der auf einer Kopplung von Photonen und Plasmonen beruht: Farbstoffmoleküle helfen Licht durch Löcher in Metallfolien, die so klein sind, dass das Licht nach herkömmlichen Theorien eigentlich gar nicht hindurchpassen dürfte.

Gemäß der klassischen Theorie von Abbe dürfte Licht Löcher so gut wie nicht passieren, wenn deren Durchmesser deutlich kleiner als die Wellenlänge ist. Wie von Ebbesen und seiner Arbeitsgruppe vor etwas mehr als zehn Jahren entdeckt, ist die Transmission für regelmäßige Lochmuster jedoch deutlich höher als gedacht. Vereinfacht gesprochen wird Licht in Oberflächenplasmonen umgewandelt. In diesem Zustand können die Photonen durch die Löcher auf die Rückseite der Metallfolie gelangen, wo sie wieder als Licht in Erscheinung treten können.

Das französische Team beschreibt nun ein weiteres Phänomen: Liegen Farbstoffmoleküle direkt auf der perforierten Metalloberfläche, verstärken sie deren Transparenz deutlich. Anders als man meinen würde, können die zusätzlichen Transparenz-Fenster bei Wellenlängen auftreten, die die Moleküle stark absorbieren. Interessanterweise tritt der Effekt auch bei Metallfolien mit unregelmäßig angeordneten Löchern auf, sogar ein einzelnes Loch reicht aus.

Die Forscher vermuten, dass zwei sich ergänzende Effekte eine Rolle spielen. Einerseits erzeugen Farbstoffmoleküle, die in den Löchern sitzen, dort eine starke Änderung des Brechungsindex in einer Weise, dass die Transmission von Wellenlängen nahe der Absorptionsbande bevorzugt wird. Andererseits erzeugt das Farbstoffmolekül ein "Spiegelbild" seines elektrischen Dipols im freien Elektronenplasma des Metalls. Dipol und Spiegelbild-Dipol wechselwirken miteinander. Absorbiert das Molekül Licht, überträgt es die Lichtenergie komplett auf die Metalloberfläche, wo sie an Oberflächenplasmonen koppelt, was die Transmission erleichtert. Beide Effkte zusammen ermöglichen es dem Licht, den Metallfilm effektiv zu passieren.

Die Entdeckung ist ein neuer Ansatz, um perforierte Metallfilme mit maßgeschneiderter Transmission im sichtbaren Lichtbereich auszustatten, indem man einfach einen Farbstoff mit der gewünschten Absorptionswellenlänge aufträgt - z.B. interessant für Solarenergietechnik, Filter und Sensoren. Dass Moleküle in vorübergehenden angeregten Zuständen deutlich andere Absorptionseigenschaften haben als im Grundzustand, verleiht diesen Metallfilmen eine zusätzliche dynamische Komponente, die eine Anwendung als rein optische ultraschnelle Schalter eröffnet.


Zusatzinformationen:

Dr. James A. Hutchison, Dr. Deirdre M. O Carroll, Dr. Tal Schwartz, Dr. Cyriaque Genet, Prof. Thomas W. Ebbesen:
Absorption-Induced Transparency.
In: Angewandte Chemie; online veröffentlicht am 26. Januar 2011, DOI 10.1002/ange.201006019

Quelle: Angewandte Chemie, Pressemitteilung Nr. 02/2011

 


Aktualisiert am 01.02.2011.



© 1996 - 2024 Internetchemie ChemLin






Akzeptieren

Diese Website verwendet Cookies. Durch die Nutzung dieser Webseite erklären Sie sich damit einverstanden, dass Cookies gesetzt werden. Mehr erfahren