Böden sind gewaltige Kohlenstoffspeicher: Mehr als 3000 Gigatonnen davon halten sie in Form von unterschiedlichen organischen Molekülen fest.
Durch Abbauprozesse gelangt der Kohlenstoff wieder in die Atmosphäre, wo er vor allem als Kohlendioxid seine klimaschädliche Wirkung entfaltet.
Warum allerdings manche organische Bestandteile des Bodens wesentlich schneller abgebaut werden als andere, war bislang nicht geklärt.
Ein internationales Forscherteam unter Beteiligung des Max-Planck-Instituts für Biogeochemie in Jena ist zu dem Ergebnis gekommen, dass Umweltfaktoren dafür verantwortlich sind. Die Molekülstruktur der kohlenstoffhaltigen Verbindungen spielt dagegen entgegen bisheriger Annahmen keine Rolle. Die Forscher stützen ihre Annahme auf Daten aus aktuellen Freilandstudien und Laborexperimenten.
Die neuen Erkenntnisse könnten helfen, Klimamodelle realitätsnäher zu gestalten.
Im Klimageschehen spielen Böden eine entscheidende Rolle. Sie speichern mehr als dreimal soviel Kohlenstoff wie Pflanzen oder die Atmosphäre. Das Element ist dabei als Bestandteil von verschiedenen organischen Verbindungen eingelagert. Ein Heer von Mikroorganismen baut diese Verbindungen allmählich ab, so dass der Kohlenstoff wieder in die Atmosphäre gelangt. Schätzungsweise 60 bis 80 Gigatonnen entweichen jährlich in Form von Kohlendioxid, ein geringerer Teil als Methan. Entscheidend dafür, ob Böden mehr Kohlenstoff aufnehmen als sie in Form klimaschädlicher Gase abgeben, sind die Auf- und Abbauraten organischen Materials. Warum aber einige der kohlenstoffhaltigen Moleküle schnell zerlegt werden, während andere Jahrhunderte oder gar Jahrtausende überdauern, stellte die Wissenschaftler bisher vor Rätsel - eine große Hürde bei der Entwicklung realistischer Klimamodelle.
Eine internationale Forschergruppe unter Beteiligung von Susan Trumbore, Direktorin am Max-Planck-Institut für Biogeochemie in Jena, ist nun zu dem Ergebnis gelangt, dass die Abbaugeschwindigkeit in erster Linie von den Wechselwirkungen zwischen den organischen Verbindungen und dem umliegenden Ökosystem abhängt, nicht von der Molekülstruktur. "Der meiste Kohlenstoff liegt ohnehin in Form von einfachen Biomolekülen vor und nicht als komplexe Makromoleküle", sagt Susan Trumbore. Für ihre Studie haben die Wissenschaftler die Fachliteratur der letzten Jahre gesammelt und ausgewertet. Ihre Zusammenschau präsentierten sie in einem Übersichtsartikel in der Zeitschrift Nature.
Lange Zeit gingen Forscher davon aus, dass für den Abbau organischer Substanzen im Boden die chemische Struktur der kohlenstoffhaltigen Moleküle entscheidend ist. Demnach bieten sehr komplizierte Verbindungen wie etwa Lignin, der Hauptbestandteil von Holz, den abbauenden Mikroorganismen wenig Angriffsfläche und bleiben daher lange bestehen. Einfache Moleküle, wie beispielsweise verschiedene Zucker, sind dagegen wesentlich einfacher zu knacken und werden entsprechend schneller abgebaut.
Neuere Befunde stellen diesen Zusammenhang allerdings infrage: So haben Forscher beobachtet, dass Lignin unter bestimmten Bedingungen schnell zerlegt wird, während einfache Zucker Jahrzehnte überdauern. Dafür können beispielsweise Temperatur, Wassergehalt oder der pH-Wert verantwortlich sein, denn diese Faktoren beeinflussen die Aktivität von Enzymen, die den Abbau ankurbeln.
Wichtig ist auch die Verteilung der Mikroorganismen, die das organische Material verwerten. Zwar wimmelt es im Boden von Bakterien - ein Gramm Erde enthält rund 40 Millionen Zellen -, jedoch versammeln sich diese normalerweise an bestimmten Hotspots, etwa an Wurzeln. Typischerweise besiedeln sie weniger als ein Prozent des Bodenvolumens. Insbesondere in tiefen Bodenschichten sind sie selten, so dass hier das organische Material überdauern kann.
"Die Beobachtungen zeigen, dass es beim Abbau organischer Verbindungen in erster Linie auf die Wechselwirkungen zwischen den Molekülen und ihrer Umgebung ankommt", interpretiert Susan Trumbore die Ergebnisse. Die Wissenschaftler plädieren dafür, diese Erkenntnis zukünftig in Klimamodellen stärker zu berücksichtigen. "Bisherige Modelle stützen sich meist nur auf einzelne Faktoren wie die Temperatur", sagt Susan Trumbore.
Demnach sollte organisches Material bei höheren Temperaturen schneller abgebaut werden, wodurch Kohlenstoff aus dem Boden entweicht und das Klima weiter anheizt - ein Teufelskreis. Nach Ansicht der Forscher ist diese Sichtweise aber zu einfach: "Die Temperatur ist nicht immer der entscheidende Faktor", sagt Susan Trumbore. "Erst wenn wir die komplizierten Vorgänge im Boden im Detail verstehen und in unsere Modelle einbeziehen, können wir bessere Vorhersagen darüber treffen, wie Böden auf die Klimaerwärmung reagieren."
(MPG)
Pressemitteilung der Universität Zürich:
Zusammenhang zwischen Boden als Kohlenstoffspeicher und globaler Erwärmung überdenken
Der Boden spielt für das Ökosystem, die Wirtschaft und für den globalen Kohlenstoffkreislauf eine entscheidende Rolle. So ist der Humus nach den Ozeanen der grösste Kohlenstoffspeicher. Geht der Humus zurück, gelangt zusätzliches CO2 in die Atmosphäre. Ein Forschungsteam unter der Leitung der Universität Zürich hat nun herausgefunden, dass die Bodenumwelt den Humusabbau bestimmt. Damit muss die Frage, wie Böden auf den globalen Klimawandel reagieren, neu beantwortet werden.
Die weltweiten Kohlenstoffvorräte in den Böden übersteigen jene aus Pflanzen und Atmosphäre um das Dreifache. Organische Bodensubstanzen wie beispielsweise Humus spielen beim globalen Kohlenstoffkreislauf eine zentrale Rolle, da sie riesige Mengen an Kohlenstoff speichern und so der Klimaerwärmung entgegenwirken. Das Kyoto-Protokoll gestattet daher den unterzeichnenden Ländern, Böden und Wälder als sogenannte Kohlenstoffsenken an die Treibhausgas-Emissionen anzurechnen. Doch es ist weitgehend unbekannt, weshalb gewisse organische Bodensubstanzen während Jahrtausenden stabil bleiben, andere dagegen schnell zerfallen und wiederum Kohlenstoff freigeben. Die bisher verwendeten Erklärungsmodelle gehen davon aus, dass die Abbaugeschwindigkeit von der molekularen Struktur der organischen Bodensubstanz abhängig ist. Jetzt weist ein internationales Forschungsteam mit 14 Wissenschaftlern unter der Leitung von Michael Schmidt, Professor für Bodenkunde und Biogeographie an der Universität Zürich, in Nature nach, dass zahlreiche andere Faktoren die Abbaugeschwindigkeit von organischer Bodensubstanz beeinflussen.
Bodenumwelt bestimmt Abbautempo des Humus
"Das Abbautempo wird nicht von der molekularen Struktur der abgestorbenen Pflanzenreste bestimmt, sondern von der Bodenumwelt, in der der Abbau stattfindet", fasst Schmidt die neuen Resultate zusammen. So beeinflusst u.a. die physische Isolation der Moleküle oder die Tatsache, ob die Moleküle im Boden durch mineralische oder physikalische Strukturen geschützt sind, die Abbaugeschwindigkeit von organischen Bodensubstanzen. Auch die Bodenfeuchtigkeit spielt eine wichtige Rolle. Die Forschenden können weiter zeigen, dass es entgegen der Lehrmeinung keine Huminstoffe im Boden gibt und diese deshalb nicht für Modelle herangezogen werden dürfen.
Es braucht neue Experimente und Modelle
Wie Prof. Schmidt erklärt, müssen die Erkenntnisse nun für neue Experimente und Modelle genutzt werden. Dabei sollen nicht nur wie bis anhin die ersten Zentimeter des Bodens untersucht werden, sondern die gesamten oberen zwei bis drei Meter. Die Forscher machen in ihrem Artikel verschiedene Vorschläge, wie die Modelle zur Prognostizierung der Reaktion von Böden auf Veränderungen des Klimas, der Vegetation und der Landnutzung zu verbessern sind.
Die neuen Erkenntnisse werfen zudem ein kritisches Licht auf Bioengineering-Versuche mit stark Lignin-haltigen Pflanzen oder Pflanzenkohlen (Biochar), mit denen langfristig mehr Kohlenstoff im Boden gespeichert werden soll.
Zusatzinformationen:
Michael W. I. Schmidt, Margaret S. Torn, Samuel Abiven, Thorsten Dittmar, Georg Guggenberger, Ivan A. Janssens, Markus Kleber, Ingrid Kögel-Knabner, Johannes Lehmann, David A. C. Manning, Paolo Nannipieri, Daniel P. Rasse, Steve Weiner und Susan E. Trumbore:
Persistence of soil organic matter as an ecosystem property.
In: Nature; 478, 49 - 56, 06. Oktober 2011, DOI 10.1038/nature10386
Quelle: Max-Planck-Institut für Biogeochemie, Jena
Aktualisiert am 05.10.2011.
Permalink: https://www.internetchemie.info/news/2011/oct11/klimafaktor-boden.php
© 1996 - 2024 Internetchemie ChemLin