Menü ausblenden
Menü ausblenden   Internetchemie   |     About   |   Kontakt   |   Impressum   |   Datenschutz   |   Sitemap
Menü ausblenden   Chemie Index   |   Chemie-Lexikon   |   Chemikalien   |   Elemente
Menü ausblenden   Geräte + Instrumente   |  
Menü ausblenden   Jobbörse, Stellenangebote   |  
Menü ausblenden   Crowdfunding Chemie   |     Text veröffentlichen
Home und Neuigkeiten
Chemie A - Z
Produkte, Geräte für Labor und Industrie
Chemikalien und chemische Verbindungen
Stellenbörse für Chemie-Jobs
Impressum, Kontakt
Crowdfunding Chemie

 

Metallionen katalysieren Sulfatbildung in Wolken

Die Lebensdauer wolkenbildender Sulfat-Partikel in der Luft ist geringer als angenommen: Ursache ist eine in bisherigen Klimamodellen unbeachtete Oxidation von Schwefeldioxid.




Abbildung 1 - Messstation Schmücke: HCCT 2010 (Hill Cap Cloud Thuringia 2010) auf dem Schmücke Berg im Thüringer Wald ermöglicht eine bodengestützte integrierte Untersuchung, wie Aerosole und Wolken miteinander wechselwirken. [Bildquelle: Stephan Mertes, TROPOS]
Messstation Schmücke

Abbildung 2 - Über den Wipfeln des Thüringer Waldes nahmen die Wissenschaftler Proben der Wolken, die über den Kamm zogen, um mehr über deren Bildung und Zusammensetzung zu erfahren. [Bildquelle: Tilo Arnhold, TROPOS]
Proben der Wolken

Schwefeldioxid ist als Gegenspieler der Treibhausgase offenbar weniger effektiv als bisher angenommen. Aus ihm entstehen in der Luft Sulfat-Aerosolpartikel, die das Sonnenlicht reflektieren und als so genannte Wolkenkondensationskeime die chemischen Vorgänge in Wolken beeinflussen. Sulfat-Aerosolpartikel helfen also, die Erde zu kühlen. Sie sind deshalb ein wesentlicher Bestandteil vieler Klimamodelle.

Wie ein Team um Forscher des Max-Planck-Instituts für Chemie in Mainz nun jedoch herausfand, ist es wahrscheinlich, dass die meisten Modelle bei ihren Vorhersagen den Kühlungseffekt dieser Partikel überschätzt haben. Grund ist ein bisher weitgehend unberücksichtigter Reaktionsweg in den Wolken, den Mineralstaub katalysiert und der die Lebensdauer von Sulfat-Aerosolpartikeln und deren Fähigkeit, Sonnenlicht zu reflektieren, stark beeinflusst.

Als Kondensationskeime sind Aerosolpartikel ein wichtiger Ausgangspunkt für die Bildung von Wolken. Luftfeuchtigkeit lagert sich an ihnen an, und es entstehen kleine Tropfen, die schließlich zu Wolken werden. In den Wolken selbst jedoch verändert sich die chemische Zusammensetzung der Aerosolpartikel.

Um herauszufinden, was sich dort genau abspielt und warum, untersuchten Dr. Eliza Harris und Dr. Bärbel Sinha vom Max-Planck-Institut für Chemie gemeinsam mit weiteren Wissenschaftlern aus Mainz und anderer Institute verschiedene Luftmassen. Das Besondere: Sie beobachteten eine Wolke, die sich an einem Berg aufstaute, während sie sich bildete. Auf diese Weise verfolgten sie die Veränderung der Aerosolbestandteile im Laufe der Wolkenenstehehung.

 

Isotopen-Analyse verrät, wie Sulfat entsteht

Harris und Sinha richteten dabei ihr Hauptaugenmerk auf die Analyse von Schwefelverbindungen. Deren Zusammensetzung untersuchten sie anhand von Luftproben, die zu unterschiedlichen Zeitpunkten genommen wurden: Vor dem Eintauchen in die Wolke, während des Aufenthalts in der Wolke und nachdem sie die Wolke wieder verlassen hatten.

Die Schwefelverbindungen in den Proben unterschieden sich in der Verteilung der Schwefelisotope. Isotope sind Atome desselben Elements mit einer unterschiedlichen Anzahl an Neutronen im Atomkern und lassen sich mit einem Massenspektrometer unterscheiden. Mithilfe der NanoSIMS-Ionensonde, eines besonders hochempfindlichen Massenspektrometers, konnte das Forscherteam sogar, Rückschlüsse auf die chemischen Abläufe ziehen. "Die relativen Reaktionsraten von Isotopen sind wie Fingerabdrücke, die verraten, auf welchem Weg das Sulfat aus dem Schwefeldioxid entstanden ist", erklärt Eliza Harris ihre Untersuchungsmethode, die Teil ihrer Doktorarbeit in der Forschungsgruppe von Peter Hoppe am Max-Planck-Institut für Chemie war.

 

Rolle von Übergangsmetallionen bei der Bildung von Sulfat-Aerosolen bisher unterschätzt

Harris' Studie offenbart, dass der wichtigste Weg der Sulfatbildung in den meisten Klimamodellen bisher offenbar übersehen wurde. Ihren Messungen zufolge entstehen Sulfate in Wolken am häufigsten über die Oxidation von Schwefeldioxid (SO2) mit Sauerstoff (O2). Diese Reaktion wird durch sogenannte Übergangsmetallionen, kurz TMI für "transition metal ion", wie Eisen, Mangan, Titan oder Chrom, katalysiert. Zudem traten die Sulfate meistens in Wolkentropfen auf, die sich auf großen Mineralstaubpartikeln, den wichtigsten Lieferanten der Übergangsmetallionen, gebildet hatten. Sehr viel seltener führte die Spur zur Oxidation von Schwefeldioxid mit Wasserstoffperoxid (H2O2) und Ozon (O3).

"Als meine Kollegen und ich mit diesem Ergebnis auf die grundlegenden Annahmen der Klimamodelle blickten, waren wir sehr erstaunt. Denn nur eines von zwölf Modellen berücksichtigt die Rolle der Übergangsmetallionen bei der Sulfatbildung", so die Wissenschaftlerin, die mittlerweile am Massachusetts Institute of Technology (MIT) in den USA arbeitet. Stattdessen verwendeten die meisten Modelle den alternativen Fall der Schwefeldioxidoxidation durch Wasserstoffperoxid (H2O2), Ozon (O3) und das Hydroxyl-Radikal (OH).

Da Sulfat, das katalytisch durch Übergangsmetallionen gebildet wird, an der Oberfläche relativ großer Mineralstaubpartikel entsteht, sind diese größer als diejenigen, die aus der Reaktion mit Wasserstoffperoxid entstehen. Aufgrund ihrer Größe fallen sie - bedingt durch die Schwerkraft - schneller wieder nach unten. Somit könnte der Zeitraum, in dem sie sich kühlend auf das Klima auswirken können, kürzer sein als bisher vielfach angenommen wurde.

 

In China und Indien ist ein deutlicher Effekt zu erwarten

Eliza Harris geht deshalb davon aus, dass die bisherigen Prognosen die kühlenden Eigenschaften der Sulfat-Aerosole auf das Klima überschätzen. Bisher lässt sich jedoch noch nicht quantifizieren, welche Auswirkungen Harris' Entdeckung auf die Klimaprognosen haben wird. Zukünftige Modelle sollten die TMI-Katalyse allerdings als wichtigen Reaktionsweg der SO2-Oxidation berücksichtigen, so die Forscherin. Zwar schätzt sie die Auswirkungen auf die Klimaprognosen für europäische Regionen als eher gering ein, da hier nur wenig Mineralstaub in der Luft vorliege und der Schwefeldioxidausstoß kontinuierlich auf dem Rückzug sei. "In Indien und China jedoch, wo mit steigenden SO2-Emissionen in der Zukunft zu rechnen ist und zudem erheblich mehr Staub in der Luft ist, könnte sich ein deutlicherer Effekt abzeichnen", vermutet sie. Weitere Studien werden es zeigen.

An den Ergebnissen der nun in der Zeitschrift Science veröffentlichten Studie waren neben dem Max-Planck-Institut für Chemie in Mainz das Leibniz-Institut für Troposphärenforschung in Leipzig, das Department of Atmospheric Science an der Colorado State University, das Earth System Science Research Centre des Instituts für Geowissenschaften der Universität Mainz und das Institut für Physik der Atmosphäre der Universität Mainz beteiligt. Die Wolkenproben wurden im Rahmen der internationalen Messkampagne "The Hill Cap Cloud Thuringia" (HCCT-2010) im Thüringer Wald genommen.

Erst kürzlich wurde Eliza Harris als jüngste Doktorandin der Max-Planck-Gesellschaft des Jahres 2012 mit dem Dieter-Rampacher-Preis ausgezeichnet.

AR/PH

 

 

Pressemitteilung des Leibniz-Instituts für Troposphärenforschung

 

Mineralstaub beschleunigt Sulfatbildung in Wolken

 

Mainz/Leipzig. Metallionen aus natürlichem Mineralstaub katalysieren die Bildung von Sulfat in Wolken in höherem Maße als bisher angenommen. Dies berichtet ein internationales Forscherteam in der aktuellen Ausgabe von SCIENCE. Der Kühlungseffekt von Sulfat auf das Klima der Erde könnte durch eine Neubewertung dieses bisher unterschätzten Reaktionsweges in Klimamodellen künftig deutlich geringer ausfallen.

Auf die Spur dieses bisher unterschätzen Reaktionsweges waren die Wissenschafterinnen und Wissenschaftler des Max-Planck-Instituts für Chemie, des Leibniz-Instituts für Troposphärenforschung (TROPOS), der Colorado State University und der Universität Mainz bei der Auswertung einer umfangreichen Meßkampagne gekommen, die im Herbst 2010 auf und um den Berg Schmücke im Thüringer Wald chemische Prozesse bei der Wolkenbildung unter die Lupe genommen hatte. Dabei wurden auch verschiedene stabile Schwefelisotope wie 34S anaylsiert da die Reaktionen mit Schwefelbeteiligung zentral bei der Entstehung von Wolken sind. Die Anlagerung von schwefelhaltigem Sulfat an Partikeln in der Luft ist ein Prozess, der entscheidend zur Wolkenbildung mit beiträgt und damit das Klima der Erde mit beeinflusst.

Aus früheren Studien war bekannt, dass die gemessenen Konzentrationen von Sulfat und seinem chemischen Vorläufer Schwefeldioxid stark von den Konzentrationen aus Modellrechnungen abweichen. Es schien also ein Reaktionsweg bisher übersehen oder unterschätzt worden sein, nur welcher? "Bisher wurde angenommen, dass Wasserstoffperoxid das wichtigste Oxidationsmittel für Schwefeldioxid sei und Übergangsmetallionen aus antropogenen Quellen als untergeordneter Katalysator bei der Schwefeldioxid-Oxidation wirken", erklärt Dr. Eliza Harris vom Max-Planck-Institut für Chemie in Mainz, die mittlerweile am Massachusetts Institute for Technology (MIT) in den USA arbeitet. "Unsere Ergebnisse zeigen jetzt aber, dass nicht die anthropogenen sondern die natürlichen Quellen für solche Metallionen die entscheidenden sind und dass dies der dominierende Reaktionsweg bei der Sulfatproduktion in vielen Umgebungen sein könnte." Damit wird klar: Mineralstaub, wie er beispielsweise aus Wüsten in die Atmosphäre gelangt, hat einen größeren Einfluß auf die Bildungswege von Sulfat als bisher angenommen. Sulfat, das in diesem Reaktionsweg gebildet wird, lagert sich an die Mineralstaubpartikel an. Da diese relativ groß sind, werden sie zusammen mit dem daran gebundenen Sulfat schnell aus der Atmosphäre ausgetragen. Sulfat aus anderen chemischen Bildungswegen lagert sich dagegen eher an kleine Partikel an, die länger in der Atmosphäre schweben, und kann somit seine Klimawirkung durch leichtere Wolkenbildung und stärkere Lichtstreuung besser entfalten. Hier liegt die Brisanz der berichteten Ergebnisse für das Klima der Erde. Möglicherweise müssen sämtliche Klimamodelle in diesem Punkt überarbeitet werden. Bisher berücksichtigt lediglich eines der zwölf bedeutendsten Klimamodelle den Reaktionsweg über Metallionen überhaupt - allerdings mit Reaktionsgeschwindigkeiten, die um den Faktor zehn bis einhundert zu langsam sind, so die Analyse der Mainzer Max-Planck-Forscher, die den Anteil dieses Reaktionsweges anhand der Fraktionierungsfaktoren des Schwefelisotops abgeschätzt haben. Eliza Harris und ihre Kollegen schlussfolgern daraus, dass diese Reaktion mindestens ein Drittel zur kontinentalen Sulfatproduktion beiträgt.

An der Kampagne "Hill-Cap Cloud Thuringia (HCCT-2010)" hatten im Herbst 2010 insgesamt rund 50 Wolkenforscher aus Deutschland, Frankreich, England und den USA teilgenommen. "Ziel war es, mit speziellen Messmethoden die Veränderungen von Aerosolpartikeln bei der Aktivierung zu einer Wolke und nach dem Durchgang durch eine Wolke zu untersuchen. In der Wolke laufen eine Vielzahl von chemischen Reaktionen ab, deren Produkte durch geeignete Messmethoden nachgewiesen werden können. Veränderungen der chemischen Zusammensetzung führen zu Veränderungen der physikalischen Eigenschaften der Partikel, die durch die Experimente besser verstanden werden sollen", berichtet Dr. Dominik van Pinxteren vom TROPOS in Leipzig, der die Auswertung der Experimente koordiniert. Durch die Vielzahl der Messgeräte und die hohe Zeitauflösung entstanden eine große Menge an Daten, die teilweise auch zwei Jahre nach dem Experiment noch nicht vollständig ausgewertet sind und noch zu vielen weiteren wissenschaftlichen Publikationen führen werden. "Die jetzt in SCIENCE veröffentlichten Ergebnisse sind von großer Bedeutung für die Klimaszenarien, da alle Prognosen mit weiter steigenden Schwefeldioxid-Emissionen in den Kohleländern China und Indien rechnen, aber in diesen Ländern auch der Eintrag von Staub in die Atmosphäre besonders groß ist", erläutert Prof. Hartmut Herrmann vom TROPOS, der die Idee zu dem Großversuch hatte und die Kampagne geleitet hat. Die neuen Erkenntnisse zur besonderen Bedeutung von Mineralstaub bei der Schwefeldioxid-Oxidation könnten dazu führen, dass der bisher angenommene starke Abkühlungseffekt des gebildeten Sulfats künftig geringer eingeschätzt wird.

[Tilo Arnhold]


Zusatzinformationen:

Eliza Harris, Bärbel Sinha, Dominik van Pinxteren, Andreas Tilgner, Khanneh Wadinga Fomba, Johannes Schneider, Anja Roth, Thomas Gnauk, Benjamin Fahlbusch, Stephan Mertes, Taehyoung Lee, Jeffrey Collett, Stephen Foley, Stephan Borrmann, Peter Hoppe, Hartmut Herrmann:
Enhanced Role of Transition Metal Ion Catalysis During In-Cloud Oxidation of SO2.
In: Science; Vol. 340 no. 6133 pp. 727-730, online veröffentlcht am 10. Mai 2013, DOI 10.1126/science.1230911

Quelle: Max-Planck-Institut für Chemie, Mainz

 


Aktualisiert am 10.05.2013.



© 1996 - 2024 Internetchemie ChemLin














Akzeptieren

Diese Website verwendet Cookies. Durch die Nutzung dieser Webseite erklären Sie sich damit einverstanden, dass Cookies gesetzt werden. Mehr erfahren