Menü ausblenden
Menü ausblenden   Internetchemie   |     About   |   Kontakt   |   Impressum   |   Datenschutz   |   Sitemap
Menü ausblenden   Chemie Index   |   Chemie-Lexikon   |   Chemikalien   |   Elemente
Menü ausblenden   Geräte + Instrumente   |  
Menü ausblenden   Jobbörse, Stellenangebote   |  
Menü ausblenden   Crowdfunding Chemie   |     Text veröffentlichen
Home und Neuigkeiten
Chemie A - Z
Produkte, Geräte für Labor und Industrie
Chemikalien und chemische Verbindungen
Stellenbörse für Chemie-Jobs
Impressum, Kontakt
Crowdfunding Chemie

 

Bestimmung von Lösungsmittelstrukturen mittels NMR

Neue Theorie zur Analyse wechselwirkender Kernspins in Lösungsmitteln. Die Entdeckung langreichweiter Effekte verändert Interpretation von NMR Spektren.




Abbildung: Computersimulation eines ionischen Lösungsmittels: Die Abbildung zeigt eine Computersimulation eines viel benutzten ionischen Lösungsmittels. NOE-Experimente bei tiefen Frequenzen erfassen die Struktur des gesamten Bereichs. Experimente bei hohen Frequenzen liefern Information über die durch eine Lupe hervorgehobene lokale Struktur zweier benachbarter Teilchen. [Bildquelle: AG 'Physikalische Chemie der Flüssigkeiten']
Ionisches Lösungsmittel

Das Exzellenzcluster RESOLV an der RUB kann nur wenige Monate nach seinem Start erste Erfolge vorweisen: Ein internationales Team um Forscher der RUB und der Universität Wien hat ein seit Langem bestehendes theoretisches Problem bei der Bestimmung von Lösungsmittelstrukturen mithilfe der kernmagnetischen Resonanzspektroskopie gelöst. Ihr Modell erklärt, dass die Kopplung der Kernspins in unterschiedlichen Molekülen von der Frequenz der eingesetzten elektromagnetischen Strahlung abhängig ist.

Das Verständnis der molekularen Eigenschaften von Lösungsmitteln ist ein zentrales Anliegen von RESOLV.

Die Zeitschrift 'Angewandte Chemie' widmete dem Thema die Titelgeschichte [siehe Artikelhinweis unten].

 

Von Overhauser bis Wüthrich

Kaum eine spektroskopische Methode hat so vielfältige Anwendungen wie die kernmagnetische Resonanzspektroskopie (englisch: "nuclear magnetic resonance spectroscopy", besser bekannt als "NMR"). Die Methoden der NMR-Spektroskopie beruhen auf der Beobachtung des als "Kernspin" bezeichneten Drehimpulses von Atomen, genauer: des mit ihnen verbundenen magnetischen Moments. Dieses macht das Atom zu einem Stabmagneten, dessen Achse sich in einem Magnetfeld ausrichtet, sich aber ansonsten wahllos im Raum orientiert. Die Ausrichtung kann durch elektromagnetische Strahlung im Radiowellenbereich, typischerweise bei einigen 100 Megahertz, geändert werden. Das daraus resultierende NMR-Spektrum hängt von der Umgebung des Atoms ab und verrät viel über Strukturen und Bewegungen von Molekülen. Die Anwendungen der NMR-Spektroskopie reichen von der Identifizierung von Molekülen in der chemischen Analytik bis hin zur Charakterisierung von großen Molekülansammlungen.

Auch Mediziner blicken gerne mit der NMR-Lupe in den Körper, da die Computer-Tomografie auf einem NMR-Experiment beruht. Unter den zahlreichen Methoden nehmen Messungen des Kern-Overhauser-Effekts (engl. "nuclear Overhauser effect", NOE) eine wichtige Stellung ein. Der von Albert Overhauser 1953 prognostizierte Effekt sagt eine Kopplung von Kernspins durch Wechselwirkung ihrer magnetischen Momente vorher. Im selben Molekül ist dieser Effekt sehr kurzreichweitig und sollte nur benachbarte Kernspins betreffen. Darauf beruhend wurden von der Gruppe um den Schweizer Chemiker Kurt Wüthrich Techniken zur Bestimmung von Proteinstrukturen in Lösung entwickelt, für die er im Jahr 2002 den Chemie-Nobelpreis erhielt.

 

Wechselwirkungen zwischen Molekülen

In Proteinen gehören die wechselwirkenden Kernspins zum selben Molekül; ihr Abstand ändert sich während des Experiments nicht, was die theoretische Beschreibung vereinfacht. Die Erweiterung auf die Beobachtung von Wechselwirkungen zwischen den Molekülen verspricht vielfältige Anwendungen, zum Beispiel zur Bestimmung der Wasserstruktur und Wasserdynamik an der Oberfläche von Proteinen oder lokalen Strukturen in neuartigen "Designer-Lösungsmitteln" (sog. Ionischen Flüssigkeiten), beides zentrale Fragestellungen von RESOLV. In diesen Fällen gehören die Kernspins zu unterschiedlichen Molekülen und können sich relativ zueinander bewegen; ihr Abstand bleibt also nicht konstant. Dies erschwert die theoretische Behandlung, sodass bisher nur Teillösungen erzielt wurden.

"Eine neue Theorie dieses Effekts bringt nun wieder Schwung in das Arbeitsgebiet" sagt Prof. Dr. Hermann Weingärtner, der die RUB-Arbeitsgruppe "Physikalische Chemie der Flüssigkeiten" leitet. Er hat die Theorie zusammen mit Prof. Dr. Othmar Steinhauser (Institut für Computer-gestützte Biologische Chemie der Universität Wien) entwickelt. Dem Team ist es gelungen, ein realitätsnahes Modell zu entwickeln, das alle für die Fragestellung wesentlichen Faktoren berücksichtigt und mathematisch handhabbar ist. Die Ergebnisse sind überraschend, da sich herausstellt, dass die Reichweite des Kern-Overhauser-Effekts bei Spins in unterschiedlichen Molekülen von der Frequenz der eingesetzten elektromagnetischen Strahlung abhängt. Unter üblichen experimentellen Bedingungen ist der Effekt langreichweitig. Das wiederum heißt: Die Experimente bilden die Struktur der gesamten Flüssigkeit ab, und nicht wie bisher angenommen nur die nächste Umgebung eines Moleküls. Die neue Theorie ermöglicht es also, seit Langem offene Fragen und widersprüchliche Interpretationen derartiger Experimente zu klären.

Die Arbeit von Weingärtner und Steinhauser wurde vom "Cluster of Excellence RESOLV" (EXC 1069) der Deutschen Forschungsgemeinschaft gefördert.


Zusatzinformationen:

Mag. Sonja Gabl, Prof. Dr. Othmar Steinhauser, Prof. Dr. Hermann Weingärtner:
From Short-Range to Long-Range Intermolecular NOEs in Ionic Liquids: Frequency Does Matter.
In: Angewandte Chemie; online veröffentlicht am 17. Juni 2013, DOI 10.1002/anie.201302712

Quelle: Ruhr-Universität Bochum, RUB

 


Aktualisiert am 24.09.2013.



© 1996 - 2024 Internetchemie ChemLin






Akzeptieren

Diese Website verwendet Cookies. Durch die Nutzung dieser Webseite erklären Sie sich damit einverstanden, dass Cookies gesetzt werden. Mehr erfahren