Menü ausblenden
Menü ausblenden   Internetchemie   |     About   |   Kontakt   |   Impressum   |   Datenschutz   |   Sitemap
Menü ausblenden   Chemie Index   |   Chemie-Lexikon   |   Chemikalien   |   Elemente
Menü ausblenden   Geräte + Instrumente   |  
Menü ausblenden   Jobbörse, Stellenangebote   |  
Menü ausblenden   Crowdfunding Chemie   |     Text veröffentlichen
Home und Neuigkeiten
Chemie A - Z
Produkte, Geräte für Labor und Industrie
Chemikalien und chemische Verbindungen
Stellenbörse für Chemie-Jobs
Impressum, Kontakt
Crowdfunding Chemie

 

Molekulare Flimmerhärchen

Kieler Forscher entwickeln Nano-Transportsystem, das aus künstlichen, molekularen 'Flimmerhärchen' besteht.




Abbildung: Künstlerische Darstellung von Pantoffeltierchen mit künstlichen Flimmerhärchen: Die Moleküle haften mit 'Saugnäpfen' an einer Oberfläche und schlagen durch Licht angeregt nach einer Seite. [Abbildung/Copyright: Herges]
Künstliche Flimmerhärchen

Seit Milliarden von Jahren bewegen sich Bakterien durch ihre Flimmerhärchen fort. Auch in fast jeder menschlichen Zelle sind die winzigen schlagenden Härchen zu finden. Forscher der Christian-Albrechts-Universität zu Kiel (CAU) haben nun Moleküle nach ihrem Vorbild erschaffen. Künstliche Organellen und eine gezieltere Herstellung von Substanzen sind damit denkbar. Ihre Arbeit veröffentlichten die Wissenschaftler im Fachjournal European Journal of Organic Chemistry [vgl. Hinweis unten].

Flimmerhärchen (Cilien), auch Flimmerepithele genannt, bedecken unsere Atemwege wie ein Rasen. In unseren Rachen- und Nasenschleimhäuten sorgen sie dafür, dass Schleim und die darin eingebetteten Fremdkörper ständig Richtung Rachen hinausbefördert werden (außer bei starken Raucherinnnen und Rauchern, die ihre Cilien durch Nikotin und Teer zerstört haben). Dem Ziel, dieses biologische Transportsystem künstlich nachzubilden, sind Tobias Tellkamp und Professor Rainer Herges mit schaltbaren Molekülen (Diazozine) nun einen großen Schritt näher gekommen.

Solche Moleküle, die mit Licht bestrahlt hin und her "zucken", gibt es zwar schon lange. Eine gerichtete Bewegung war aber damit bisher nicht möglich. Die Schwierigkeit bestand darin, dass die Moleküle nur nach einer Seite schlagen dürfen, da sich die Bewegungen sonst aufheben. Mit einem Trick in der Molekülkonstruktion haben die Kieler Chemiker aus dem Sonderforschungsbereich 677 "Funktion durch Schalten" dieses Problem gelöst: Damit die künstlichen Härchen ihre Aufgabe erfüllen können, müssen sie außerdem auf einer Oberfläche befestigt werden. "Also haben wir eine Art molekularen Saugnapf an den Schaltern befestigt", erklärt Projektleiter Herges.

Untersuchungen zeigten, dass dieser Saugnapf sehr gut auf Goldoberflächen haftet. Das Forschungsteam beobachtete, dass sich die Moleküle schon bei einem kurzen Eintauchen des Goldes in die Lösung völlig selbstständig und regelmäßig nebeneinander anordnen. "Die Saugnäpfe saugen sich fest, sind auf der Oberfläche aber immer noch beweglich und ziehen sich gegenseitig an", beschreibt Doktorand Tellkamp. So entsteht ein künstliches Epithel.

Ob die so hergestellten Epithele wirklich so funktionieren wie etwa in unseren Nasenschleimhäuten, wollen die Forscher in einer zweiten Phase mittels Rasterkraftmikroskop-Untersuchung herausfinden. Behilflich sind ihnen dabei Kolleginnen und Kollegen aus der Kieler Oberflächenphysik um Professor Olaf Magnussen. Geplant ist, drei Nanometer große Partikel auf den mit Licht angeregten Härchen kontrolliert in eine Richtung zu bewegen.

Die Ergebnisse sind nicht nur für die Grundlagenforschung höchst interessant. Mit den künstlichen Flimmerepithelen ließe sich theoretisch eine molekulare Nanofabrikation verwirklichen, bei der molekulare Maschinen andere Maschinen bauen, indem chemische Produkte gezielt und präzise zueinander geführt werden. Ganze Fabrikationsanlagen könnten so auf einem winzigen Chip Platz finden. Außerdem könnten künstliche Organellen mit den molekularen Flimmerhärchen ausgestattet werden, die durch einen äußeren Reiz gesteuert oder gar autonom in der Blutbahn auf einen Krankheitsherd hinsteuern, erläutern die Forschenden mögliche Anwendungszwecke.


Zusatzinformationen:

Tobias Tellkamp, Jun Shen, Yoshio Okamoto und Rainer Herges:
Diazocines on Molecular Platforms.
In: European Journal of Organic Chemistry; online veröffentlicht am 24. Juni 2014, DOI 10.1002/ejoc.201402541

Quelle: Christian-Albrechts-Universität zu Kiel, CAU

 


Aktualisiert am 02.07.2014.



© 1996 - 2024 Internetchemie ChemLin






Akzeptieren

Diese Website verwendet Cookies. Durch die Nutzung dieser Webseite erklären Sie sich damit einverstanden, dass Cookies gesetzt werden. Mehr erfahren