[ Sitemap ] [ Kontakt ] [ Impressum ] [ ]


Home


Weitere Infos:

Materialchemie

DNA



Aktuelles

Mehr Chemie Nachrichten

Neueste Forschungsartikel

Stellenmarkt Chemie


Chemie A bis Z

Index Chemie

Chemikalien

Produkte und Firmen


About Internetchemie

Internetchemie

Impressum


English News



Publiziert am 30.06.2009 Infos zum Internetchemie RSS News Feed

Erbgut als Kleber


 
Wissenschaftler haben einen Klebstoff entwickelt, der winzige Partikel nicht nur zusammenhält, sondern sie auch selbständig im richtigen Abstand in Kontakt bringt.

Das ist der Traum jedes Ingenieurs, der regelmäßig strukturierte Materialien mit kleinsten Poren benötigt: ein Klebstoff, der winzige Partikel nicht nur zusammenhält, sondern sie auch selbständig im richtigen Abstand in Kontakt bringt. Wissenschaftler um die Professoren Clemens Richert und Stefan Bräse am Karlsruher Institut für Technologie (KIT) haben nun einen solchen Stoff als "Biokleber" entwickelt. Die Ergebnisse wurden in der Fachzeitschrift ChemBioChem veröffentlicht (siehe unten).

Biokleber

Am Computer berechnete Struktur einer "Elementarzelle" mit Zentralmolekül und DNA-Doppelsträngen. Daraus setzt sich der poröse Feststoff zusammen.

[Grafik: CFN]

Um dreidimensionale Gitter mit Poren im Nanometer-Bereich (1 Nanometer = 1 Millionstel Millimeter) aufzubauen, knüpfen sie extrem kurze Stücke von einsträngiger Desoxyribonukleinsäure (DNA), die von der Natur ursprünglich als Träger der genetischen Information entwickelt wurde, an ein sternförmiges Molekül. Wie im Erbgut der Lebewesen lagern sich jeweils zwei DNA-Einzelstränge, die aufgrund der Abfolge ihrer Bausteine zueinander komplementär sind, zu einem Doppelstrang zusammen. An jedem Zentralmolekül sind vier dieser "klebrigen" DNA-Enden wie die Ecken eines Tetraeders angeordnet. Sie können sich daher mit jeweils vier anderen Molekülen verbinden. Durch Selbstorganisation entsteht so eine komplexe räumliche Gitterstruktur mit neuen Eigenschaften.

Poröse Materialien spielen als Katalysatoren, Speichermedien und strukturgebende Komponenten, beispielsweise in der Technik oder der Medizin, eine wichtige Rolle. "Wir konnten zum ersten Mal zeigen, dass mit Hilfe kurzer DNA-Schnipsel quasi-unendliche Strukturen für solche Anwendungen aufgebaut werden können", beschreibt Richert die Arbeit, die am Centrum für Funktionelle Nanostrukturen (CFN) des KIT in Zusammenarbeit mit den Arbeitsgruppen Bräse (Chemie), Wenzel (Physik) und Puchta (Biologie) entstand. Dafür reichten bereits DNA-Abschnitte von nur zwei Nukleotiden, also den Buchstaben, aus denen DNA besteht, damit sich die Gerüste in wässriger Lösung bildeten. Dieses Material lagert sich dann selbständig zu Nanopartikeln zusammen, wenn es abgekühlt wird. Die extrem kurzen DNA-Doppelstränge haben den Vorteil, dass eine relativ geringe Aktivierungsenergie benötigt wird, um fehlerhafte Strukturen wieder aufzubrechen. "Dies ermöglicht einen dynamischen Auf- und Abbauprozess", so Richert, der auch nach seinem kürzlichen Wechsel an die Universität Stuttgart das Projekt in Zusammenarbeit mit seinen Karlsruher Kollegen weiterführen wird. "Ein großer Vorteil dabei ist, dass wir mit rein synthetischem Material große Gitter erhalten können."

Im Karlsruher Institut für Technologie (KIT) schließen sich das Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft und die Universität Karlsruhe zusammen. Damit wird eine Einrichtung international herausragender Forschung und Lehre in den Natur- und Ingenieurwissenschaften aufgebaut. Im KIT arbeiten insgesamt 8000 Beschäftigte mit einem jährlichen Budget von 700 Millionen Euro. Das KIT baut auf das Wissensdreieck Forschung - Lehre - Innovation.

Die Karlsruher Einrichtung ist ein führendes europäisches Energieforschungszentrum und spielt in den Nanowissenschaften eine weltweit sichtbare Rolle. KIT setzt neue Maßstäbe in der Lehre und Nachwuchsförderung und zieht Spitzenwissenschaftler aus aller Welt an. Zudem ist das KIT ein führender Innovationspartner für die Wirtschaft.


 

Quellen und Artikel:

-

Martin Meng, Carolin Ahlborn, Matthias Bauer, Oliver Plietzsch, Shahid A. Soomro, Arunoday Singh, Thierry Muller, Wolfgang Wenzel, Stefan Bräse, Clemens Richert:
Two Base Pair Duplexes Suffice to Build a Novel Material.
In: ChemBioChem; Volume 10 Issue 8, Pages 1335 - 1339; Published Online: 6 May 2009
DOI: 10.1002/cbic.200900162
URL: direct link

-

Quelle: Karlsruher Institut für Technologie

 

Weitere Informationen:

-

... zum Thema (Hintergrundinformationen, Forschungsartikel etc.): Siehe Menüleiste oben links

-

Ihre Pressemitteilung veröffentlichen ...




 


Suche nach themenverwandten Internetseiten:


Information nicht gefunden?
Versuchen Sie es hier!


Benutzerdefinierte Suche


Internetchemistry © 2007 - 2009 A. J.; aktualisiert am 30.06.2009