Menü ausblenden
Menü ausblenden   Internetchemie   |     About   |   Kontakt   |   Impressum   |   Datenschutz   |   Sitemap
Menü ausblenden   Chemie Index   |   Chemie-Lexikon   |   Chemikalien   |   Elemente
Menü ausblenden   Geräte + Instrumente   |  
Menü ausblenden   Jobbörse, Stellenangebote   |  
Menü ausblenden   Crowdfunding Chemie   |     Text veröffentlichen
Home und Neuigkeiten
Chemie A - Z
Produkte, Geräte für Labor und Industrie
Chemikalien und chemische Verbindungen
Stellenbörse für Chemie-Jobs
Impressum, Kontakt
Crowdfunding Chemie

 

Geo-Recycling läuft schneller als gedacht

Abgesunkene Ozeankruste tritt in Vulkanen bereits nach 500 Millionen Jahren wieder an die Oberfläche.




Abbildung: Olivinkristall des Mauna Loa-Vulkans: Die braunen Ovale sind glasig erstarrte Einschlüsse, die als geschmolzene Tropfen in den entstehenden Olivinkristall gelangten. Bei den schwarzen Punkten handelt es sich um Gasblasen. In den glasigen Einschlüssen findet man Strontium-Isotopenverhältnisse, wie sie im Meerwasser vor 500 Millionen Jahren vorkamen. [Bild: Sobolev, Max-Planck-Institut für Chemie]
Olivinkristall des Mauna Loa

Das Geo-Recycling läuft in Vulkanen viel schneller ab, als Wissenschaftler bislang annahmen. Gestein des Erdmantels, das wegen der Bewegung der Erdplatten ins Erdinnere absinkt, gelangt über Vulkane bereits nach rund 500 Millionen Jahren wieder an die Erdoberfläche. Das haben Forscher des Max-Planck-Instituts für Chemie in Mainz anhand vulkanischer Gesteinsproben festgestellt. Zuvor gingen Geowissenschaftler davon aus, dass dieser Prozess etwa zwei Milliarden Jahre dauert.

So gut wie alle Inseln in den Ozeanen sind Vulkane. Mehrere von ihnen, wie zum Beispiel Hawaii, sind aus dem untersten Teil des Erdmantels entstanden. Dieser geologische Prozess ähnelt der Bewegung farbiger Flüssigkeiten in einer Lavalampe: Heißes Gestein steigt in zylindrischen Säulen, den sogenannten Mantel-Plumes, aus fast 3000 Kilometer Tiefe auf. In der Nähe der Oberfläche schmilzt es, weil der Druck nachlässt, und bricht in Vulkanen aus dem Erdinneren hervor. Die Plumes wiederum stammen ursprünglich von der ehemaligen Ozeankruste, die in der Frühzeit der Erde bis zum Boden des Erdmantels abgesunken ist. In den Plumes kommt dieses Gestein wieder an die Erdoberfläche.

Bisher nahmen Forscher an, dass dieses Recycling etwa zwei Milliarden Jahre dauert.

Die chemische Analyse von winzigen, glasigen Einschlüssen im Olivinbasalt des Mauna Loa-Vulkans auf Hawaii lieferte jetzt aber die geologische Überraschung: Der gesamte Recyclingvorgang benötigt maximal eine halbe Milliarde Jahre und läuft somit viermal schneller ab als bisher angenommen.

In den mikroskopisch kleinen Einschlüssen des Gesteins finden sich Spurenelemente, die ursprünglich im Meerwasser gelöst waren und die Datierung des Recycling-Prozesses erlauben. Bevor die alte Ozeankruste in den Mantel absinkt, saugt sie sich nämlich mit Meerwasser voll, das die aufschlussreichen Spurenelemente in dem Gestein hinterlässt.

Um die Einschlüsse untersuchen zu können, hatten die Mainzer Wissenschaftler eine spezielle Laser-Massenspektrometrie-Methode entwickelt. Mit ihrer Hilfe lassen sich unter anderem Isotope von extrem geringen Strontium-Mengen analysieren. Strontium ist ein chemisches Element, das typischerweise in Spuren auch im Meerwasser vorkommt. Die Isotope eines chemischen Elementes weisen die gleiche Protonenzahl, aber unterschiedliche Neutronenzahlen auf. Da sich das Isotopenverhältnis des Strontiums im Meerwasser während der Erdgeschichte ändert, lässt sich daraus das Alter der Meerwasserreste und des umgebenden Gesteins bestimmen.

Zu ihrer Überraschung fanden die Max-Planck-Forscher in ihren Proben ein Strontium-Isotopenverhältnis, das auf ein Alter von weniger als 500 Millionen Jahren schließen lässt. Daher muss auch das Gestein, aus dem die Hawaii-Basalte entstehen, viel jünger sein als bislang angenommen.

"Das Strontium des Meerwassers ist offenbar mit der Ozeankruste in den tiefen Erdmantel gelangt, aus dem es bereits nach einer halben Milliarde Jahre in den Laven der Hawaii-Vulkane wieder zu Tage tritt", erklärt Klaus Peter Jochum, Mitautor der Publikation. "Es jetzt wieder zu entdecken, ist eine Riesenüberraschung."

Ebenso überraschend fanden die Wissenschaftler die große Bandbreite der Isotopenverhältnisse in den Einschlüssen einer einzigen Probe des Olivinbasalts. "Sie ist viel größer als in allen Lava-Proben, die bislang von den Vulkanen Hawaiis untersucht wurden", sagt Alexander Sobolev. "Das deutet darauf hin, dass der Erdmantel auch in kleinen Bereichen chemisch viel heterogener ist als wir vorher dachten." Die Vielfalt hat sich allerdings nur in den Schmelzeinschlüssen erhalten, weil die Lava so gut durchmischt wurde.

Sobolev, Jochum und ihre Kollegen erwarten, auch bei anderen Vulkanen das gleiche Isotopenverhältnis nachweisen zu können und so die Recyclingdauer der Ozeankruste noch genauer bestimmen zu können.

 

Über das Max-Planck-Institut für Chemie

Am Max-Planck-Institut für Chemie (260 Mitarbeiter) werden die Erde und ihre Atmosphäre in unterschiedlichen Größenbereichen, vom Nanopartikel bis zum Planeten und von der Ökosystemdynamik bis zum globalen Klimawandel erforscht. Drei Abteilungen untersuchen das Erdsystem in Feldstudien, unter Laborbedingungen und mit Hilfe von computergestützten Modellsystemen. Somit trägt das Institut zum grundlegenden Verständnis der natürlichen Ressourcen der Erde bei und liefert notwendige Methoden für deren nachhaltige Nutzung und den Schutz der Umwelt. Mit einer International Research School und einem E-Learning Programm beteiligt sich das Institut auch aktiv an der Wissenschaftsausbildung. Das Max-Planck-Institut für Chemie beteiligt sich aktiv am Veranstaltungsprogramm 2011 zur Stadt der Wissenschaft in Mainz. Im nächsten Jahr feiert das Institut sein 100-jähriges Bestehen.


Zusatzinformationen:

Alexander V. Sobolev, Albrecht W. Hofmann, Klaus Peter Jochum, Dmitry V. Kuzmin und Brigitte Stoll:
A young source for the Hawaiian plume.
In: Nature; online veröffentlicht am 10. August 2011, DOI 10.1038/nature10321

Quelle: Max-Planck-Institut für Chemie, Mainz

 


Aktualisiert am 23.08.2011.



© 1996 - 2024 Internetchemie ChemLin






Akzeptieren

Diese Website verwendet Cookies. Durch die Nutzung dieser Webseite erklären Sie sich damit einverstanden, dass Cookies gesetzt werden. Mehr erfahren