Dass Platin ein äußerst nützlicher Katalysator ist, weiß man schon lange. Das Edelmetall wird beispielsweise in Fahrzeugkatalysatoren verwendet, um schädliches Kohlenmonoxid in Kohlendioxid umzuwandeln. Winzige Platinkörnchen können Moleküle zerlegen oder festhalten, sodass bestimmte chemische Reaktionen leichter ablaufen. An der TU Wien gelang es nun mit Hilfe von Rastertunnelmikroskopen, das katalytische Verhalten von Platin auf einer Eisenoxid-Oberfläche abzubilden und erstmals direkt zu beobachten, was dabei auf Atom-Ebene vor sich geht.
Erstaunlicherweise findet die Reaktion gar nicht auf den Platin-Partikeln statt, entscheidend ist das Zusammenspiel zwischen Platin-Partikeln und dem Untergrund aus Eisenoxid.
Moleküle fangen und oxidieren
Die winzige Nanopartikel, die man für die Katalyse verwendet, bestehen oft bloß aus wenigen Platin-Atomen bestehen. Sie können Oxidationen ermöglichen, indem sie bestimmte Moleküle festhalten und mit Sauerstoff in Kontakt bringen. Kohlenmonoxid (CO) wird auf diese Weise zu Kohlendioxid (CO2) oxidiert, aus Wasserstoffgas (H2) wird Wasser (H2O). Diese Reaktionen sind auch ohne Platin möglich, aber Platin sorgt dafür, dass sie bei viel niedrigeren Temperaturen stattfinden können als sonst.
"Eigentlich hatten wir gedacht, dass diese chemischen Reaktionen direkt auf den Platin-Partikeln stattfinden. Doch die Bilder zeigen eindeutig, dass das nicht der Fall ist", sagt Prof. Gareth Parkinson. Seit Jahren beschäftigt er sich gemeinsam mit Prof. Ulrike Diebold vom Institut für angewandte Physik der TU Wien mit dem Verhalten kleinster Partikel, die auf Metalloxid-Oberflächen festgehalten werden. Nun konnte das Team nachweisen, dass der Sauerstoff für die chemischen Reaktionen an den Platin-Partikeln nicht von oben aus der Umgebungsatmosphäre kommt, sondern von unten, aus dem Eisenoxid.
Nano-Löcher und wanderndes Eisen
Das Eisenoxid (Fe3O4), auf dem die Platin-Partikel festgehalten werden, hat bemerkenswerte Eigenschaften. Es hat zwar eine regelmäßige Kristallstruktur in der normalerweise jedes Atom brav auf seinem Platz sitzt, doch es erlaubt den eingebauten Eisen-Atomen eine sehr hohe Beweglichkeit, das Eisen kann durch das Material hindurchwandern. Wenn die Platin-Nanopartikel nun Moleküle aus der umgebenden Atmosphäre einfangen und mit Sauerstoff-Atomen aus der Eisenoxid-Oberfläche kombinieren, bleibt ein Überschuss von Eisen-Atomen, die daraufhin tief in das Material hineinwandern. Übrig bleibt eine Lücke in der Oberfläche - und die kann man in den Rastertunnelmikroskop-Aufnahmen deutlich sehen.
Dabei kann eine Kettenreaktion ausgelöst werden: Sobald ein Platin-Nanopartikel durch eine chemische Reaktion ein Loch in der Eisenoxid-Oberfläche erzeugt, stehen an der Kante des Lochs Atome zur Verfügung, die nicht mehr so stark an den Rest des Materials gebunden sind. An dieser Stelle kann die nächste Reaktion viel leichter stattfinden, der Platin-Nanopartikel wird ein Stück weitergeschoben und steht gleich wieder für den nächsten Schritt zur Verfügung. "Wir sehen dann lange Gräben in der Oberfläche, die ein einzelner Platin-Nanopartikel hinterlassen hat", sagt Ulrike Diebold.
Das Gegenteil passiert, wenn man die Platin und Eisenoxid einer Sauerstoff-Atmosphäre aussetzt. Die Platin-Partikel können dann die Sauerstoff-Moleküle (O2) aufspalten, und die einzelnen Sauerstoff-Atome können daraufhin in die Oberfläche eingebaut werden. Aus dem Inneren des Materials kommen Eisen-Atome nach, und neben dem Platin-Nanopartikel bildet sich eine zusätzliche Eisenoxid-Insel. Statt Löcher werden dann viele kleine Terrassen auf der Oberfläche sichtbar.
Bessere Katalysatoren
Um diese Effekte entschlüsseln zu können, war jahrelange Vorarbeit nötig. In vielen wichtigen Einzelschritten perfektionierte das Oberflächen-Forschungsteam am Institut für Angewandte Physik der TU Wien den Umgang mit Metalloxiden und winzigen Partikeln. In den letzten Jahren konnten immer wieder wichtige Erkenntnisse über die Struktur von Metalloxiden, über die Beweglichkeit von Atomen an ihrer Oberfläche und ihre chemischen Eigenschaften gewonnen werden. Erst dadurch wurde es nun möglich, die chemischen Abläufe bei der Platin-Katalyse sichtbar zu machen und zu erklären.
Durch dieses tiefere Verständnis kann man auch ganz gezielt bessere Katalysatoren herstellen - so zeigt sich etwa, dass die Effizienz von Platin-Katalysatoren durch eine Vtrorbehandlung mit Wasserstoff gesteigert werden kann. Die atomaren Gräben, die sich in der Oberfläche bilden, hindern nämlich die Platin-Nanopartikel daran, zu größeren Partikeln zusammenzukleben und somit an Reaktivität zu verlieren.
Zusatzinformationen:
Roland Bliem, Jessi van der Hoeven, Adam Zavodny, Oscar Gamba, Jiri Pavelec, Petra E. de Jongh, Michael Schmid, Ulrike Diebold und Gareth S. Parkinson:
An Atomic-Scale View of CO and H2 Oxidation on a Pt/Fe3O4 Model Catalyst.
In: Angewandte Chemie; online erschienen am 10. September 2015, DOI 10.1002/ange.201507368
Quelle: Technische Universität Wien, Österreich
Aktualisiert am 17.09.2015.
Permalink: https://www.internetchemie.info/news/2015/sep15/wirkung-platin-eisenoxid-katalysator.php
© 1996 - 2024 Internetchemie ChemLin